
DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

1

20
Lingo for C Programmers

Copyright 1996-1999. Bruce A. Epstein. All rights reserved.

This bonus chapter covers Lingo’s internal operation, with an emphasis on
comparing it to C/C++. The latest version of this document can be found at
http://www.zeusprod.com/nutshell/chapters/lingovsc.html in Acrobat PDF
format. This chapter is a superset of Chapter 4, Lingo Internals, in Lingo in a
Nutshell. Even if you are not a C programmer, comparing Lingo to another
language illuminates numerous issues. This chapter also offers additional details
on Lingo and Director’s development paradigm. You should be familiar with the
first four chapters of Lingo in a Nutshell, which cover Lingo’s foundation,
before proceeding. You should also understand Director’s Score metaphor as
explained in Chapter 1, How Director Works, in Director in a Nutshell . Refer to
Chapter 13, Lingo Xtras and XObjects, in Lingo in a Nutshell, and Chapter 10,
Using Xtras, in Director in a Nutshell for details on extending Director
(especially if you are a skilled C programmer).

Lingo Internals

There are four major issues for new Director users, especially those coming
from other languages:

Performance
Director is much slower than custom C applications. See the discussion
below, and Chapter 9, Memory and Performance , in Director in a Nutshell.

The Cast, Score and Timeline Metaphor
Director’s Cast and Score affect your programming structure. Refer to
Chapter 1, How Director Works, in Director in a Nutshell to understand the
quirky interaction between Lingo and the Cast and Score, and how the
timeline metaphor affects interactivity and events.

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

2

Media
Director’s extensive use of media raises issues that are new to many
programmers. Even perfect Lingo and Score usage can not overcome
improperly prepared content. A Director programmer must know enough
about content preparation to, at a minimum, instruct content providers in the
proper preparation of video, sound and graphics. Refer to Part III:
Multimedia Elements of Director in a Nutshell, especially Chapter 13,
Graphics, Color, and Palettes, Chapter 15, Sound and Cue Points, and
Chapter 16, Digital Video.

Interactivity
Director projects usually have lots of interactivity, and extensive GUI
requirements. Refer to Chapter 2, Events, Messages and Scripts, Chapter 9,
Mouse Events, and Chapter 10, Key Events, in Lingo in a Nutshell.

A client of mine, who is extremely proficient in C, and has a large library of
multimedia routines written in C, complained that he had been corralled into
using Director for a Macintosh kiosk project. Many of his objections were valid,
especially given his C skills, existing C library, and lack of Director expertise.
Lingo is comparable to English. If it is not your first language, English’s
spelling and pronunciation surely seem arbitrary. But if you are intimately
familiar with English, it doesn’t seem so bad. Once you learn Lingo’s quirks, it
is quite flexible and capable. For most projects, I’ve been much more productive
with Director than I would have been with C, in part because my C skills are
mediocre, but also because Director is geared towards multimedia development.

Director and Lingo offer the following advantages to most developers:

• Easy, fast, iterative prototyping while working with content providers or
clients

• A graphical interface for easily constructing complicated sprite animations
on Stage or in the Score

• Optimized blitting for fast compositing with ink effects

• Built-in transitions and palette controls

• A large number of third-party Xtras for specialized applications

• Excellent integration of media, such as graphics, sound, and video

• Re-usable cross-platform code across Macintosh and Windows

• Internet-based Shockwave delivery for major browsers, and internet-
enhanced CDs

• Content is separate from Lingo code, allowing better collaboration

• An integrated environment with content development tools and extensive
Lingo command set.

Most C programmers create one-frame Director movies, and do everything

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

3

manually via Lingo. They mistakenly avoid the Score even when creating
animations, a task for which Director is ideal. Because they don’t understand
Director’s paradigm, and haven’t made allowances for the media requirements,
they assume Director is hopeless. They tend to revert to C development, or
complain vociferously about Director. The key is to distinguish between
Director’s deficiencies and one’s own biases. This chapter, and the information
in Lingo in a Nutshell and Director in a Nutshell should go a long way to
helping you be more efficient, more quickly, in Director.

Most C developers equate Lingo with Director. Although
Lingo has many deficiencies, the non-Lingo portions of
Director, such as the Score, also have many strengths. C
developers can create Xtras to extend Director’s functionality
to address its true deficiencies rather than its imagined ones.

I’ll be the first to admit that Director is not ideal for the following tasks:

Fast-twitch video games (performance is too slow)

Real-time effects (overhead is often too great)

Low-end machine playback (RAM requirement is too great)

Computer Based Training (Macromedia Authorware is optimized for this)

That said, the above applications can be accomplished in Director by a skilled
technician. There are additional applications, such as printing and device
control, for which Director benefits from or requires third party Xtras. Refer to
the resources mentioned in the Preface and throughout Lingo in a Nutshell and
Director in a Nutshell for information on third-party Xtras.

The Paradigm and the Interface

Director’s user interface is formidable, and a far cry from a simple text file in
which a C programmer typically enters code. See the back cover of Director 6’s
Using Director manual for an overview of Director’s windows (this is no longer
included on the back cover of the D7 manuals). See Part I: Director’s Core
Components in Director in a Nutshell for details on all the Director windows
and shortcuts. Refer to the Glossary in Lingo in a Nutshell for details, but here is
a quick run-down of Director’s terminology.

Score
Director’s timeline (like a giant spreadsheet) for constructing cell
animations. Refer to Macromedia’s Using Director manual and to Chapter
1, How Director Works, and Chapter 3, The Score and Animation, in
Director in Nutshell.

Cast
Director’s database of all its assets. The Cast holds bitmaps, sounds, text,
and even Lingo scripts. The term Cast (or castLib) has nothing to do with
casting data between different data types, as is often done explicitly in C.

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

4

Movie
A Director data file that contains the Score and an internal Cast. Movie files
have nothing directly to do with QuickTime or other digital video formats.

Linking
Linking means to attach an external asset (external sound or video, external
castLib, or internet URL) to your Director movie. The term has nothing to
do with linking in the C sense of creating an executable from object files.

Who’s The Boss

C programmers may have a hard time letting Director handle so much of the
action. If C is like a Ferrari with a manual transmission, Director is more like a
couch on wheels with an automatic transmission, cruise control, and a chauffeur.
James Terry of Kandu (http://www.kandu.com) writes:

I’m not sure my programming style changed [when I moved from C to
Director] (maybe it should have), so much as my mental picture of the
“program.” In C/C++ everything is there in the code and I feel in
complete control. When using Director it’s more like working with a
partner who is in charge of some parts. I don’t have that same feeling of
control. Of course it’s nice that the partner can do some work for you.
The whole point of working with Director is that you’re just part of the
team; knowing how Director is working is so crucial. The biggest
adjustment I had to make was just plain finding my source code! As a
C/C++ programmer I was used to having all my source code in easily
viewable text files.

If you sympathize with James you should read Where the Hell Are My Scripts?
in Chapter 2, Events, Messages and Scripts, in Lingo in a Nutshell. In Director,
your scripts are stored in script cast members that reside in the Cast window like
any other asset. Prior to D7, each script was limited to 32 KB of text, but you
can have a virtually unlimited number of scripts.

Memory, Pointers and Memory Access

Director’s memory usage is dominated by multimedia content, primarily
graphics, rich text and non-streaming audio. In Lingo, you don’t explicitly
allocate RAM, as with malloc or alloc in C. There is no low-level access to
RAM, or to Director’s off-screen buffer, except via Xtras. Nor are there address
or indirection operators, as in C, that would give access to a variable’s memory
space. In Lingo, items are disposed of by setting them equal to zero, except for
XObject instances which are freed with mDispose (don’t use mDispose with
Xtras). When an item in memory is no longer referenced by any variables,
Director will deallocate and recapture the memory (i.e. reference count-based
garbage collection), but on an ambiguous schedule. Refer to Chapter 9, Memory
and Performance, in Director in a Nutshell for details on allocating and freeing
memory, loading and unloading assets, and Director’s memory requirements.
Lingo does not support a sizeof function, because the size of various data types

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

5

is not implementation-dependent, as in C.

Compilation, Interpretation and Performance

Lingo is not compiled, but rather tokenized into byte-code. The byte-code is the
same on both the Macintosh and Windows platforms, and is translated at
runtime by the Projector (or the Shockwave plug-in) into machine-specific
instructions. This is convenient for cross-platform development, but does not
offer the speed of assembler. Because Lingo is not compiled, there is no separate
compiler, or compiler directives.

Director 7 supports a new “dot syntax” similar to C or
JavaScript, as well as the old Director 6 Lingo syntax. There is
no performance difference between the two. They both
“compile” to the same byte-code.

Director 6’s Modify Movie Properties Allow Outdated Lingo option
controls how Director interprets the Lingo of movies created in previous
versions of Director. The checkbox is selectable only if a movie has been
upgraded from a prior version of Director (this option does not appear in
Director 7). If you are updating movies from older versions of Director
(especially from Director 3.1.3 to 4.0, and Director 4.0 to 5.0) refer to Tables
4-1 and 4-3 in Chapter 4, CastLibs, Cast Members, and Sprites, in Director in a
Nutshell. Your main concern when upgrading versions is not necessarily the new
Lingo features, but rather the changes in the behavior of existing functions that
might break legacy code. Such a change from version to version would be
exceedingly rare in a language such as C, but is common in Director. In Director
6, the major alteration from prior versions involves sprite message passing.
Refer to Chapter 2, Events, Messages and Scripts, and Table 17-2 covering
Lingo changes from Director 5 to Director 6, in Lingo in a Nutshell. The most
notable change from Director 6 to Director 7 is that using parentheses around a
member expression is no longer supported.

Don’t use this:

member (x) of castLib y

Use either of these instead:

member (x, y)
member x of castLib y

A second notable change is that a period (.) can no longer be used in a symbol or
variable name, because it confuses the parser, and is instead used to specify a
property of an object, member or sprite, such as:

put sprite(5).locH

A third notable change is that D7 no longer allows undeclared local variables as
was possible in D6, as described under “Special Treatment of the First
Argument Passed” on page 61 of Lingo in a Nutshell.

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

6

For more details on Lingo changes from Director 6 to Director 7, see the
Director 7 ReadMe file. See also http://www.zeusprod.com/nutshell/d7diffs.html
and http://www.zeusprod.com/nutshell/dotsyntax.html (both under construction).

Lingo executes egregiously slowly compared to C. You must
be much more conscious of both media requirements and
program execution times, even for simple things like loops.
There is no compiler optimization. You must manually
optimize your code, such as by moving assignment statements
outside of repeat loops.

The performance of your Lingo code may be dwarfed by the time required to
load media assets or download Shockwave data, but when performing an
operation thousands of times, you cannot ignore Lingo’s execution speed. Table
20-1 shows the comparable speed of 10,000 iterations of a various Lingo
commands performed in Director 6 using a repeat loop of the form:

repeat with x = 1 to 10000
 statement(s)
end repeat

These tests were run on a 33 MHz Macintosh 68040 processor, which is very
slow by today’s standards. But similar tests would run at least an order of
magnitude faster on the same CPU if written in C. Lower numbers are faster, but
the numbers should be used for comparison purposes only. Remember that the
absolute speed difference among Lingo commands is rarely noticeable for a
single execution, and that Table 20-1’s differences are amplified by performing
an operation thousands of times.

Note especially how slow the put statement is when used to output text in the
Message window. Note that even the nothing statement takes time to execute,
and that the case statement can be slower than the corresponding if construct.
Note that floating-point math is slower than integer math and that text handling
tends to be very slow.

The speed of an operation may vary across different versions of Director and
will vary across platforms and in Shockwave. For example, checking the value
of the ticks is noticeably slower in D7 than in D6. The speed of an operation
may be affected by the speed with which cast member references within an
expression are resolved, or the speed of cast member loading See Access Speed
and Name Caching in Chapter 4, and see “Gauging Performance” in Chapter 9
in Director in a Nutshell.

Table 20-1: Comparative Lingo Execution Speed

Operation Lingo Code within repeat loop Comparative time

Repeat Loop -- 0.32

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

7

No code, only a comment inside the loop

No operation nothing

(Lingo’s no-op statement)
0.47

Assignment set y = 5 0.37

Command execution testCommand 0.72

Function call
returning value

testFunction() 0.92

Print in Message
window

put x 5400.0

Text Parsing set y = word 3 of "this is text" 2.18

Type Conversion set y = integer (5.5) 2.05

Integer Math set y = 5 * 12 0.4167

Floating Point Math set y = 5.0 * 12.4 1.3667

If statement if x > 5000 then
 set y = 5
else
 set y = 4
end if

0.50

Case statement case (TRUE) of
 (x > 5000):
 set y = 5
 otherwise
 set y = 4
end case

.617

Logical AND if (x > 5000) AND (x < 8000) then
 set y = 5
end if

.567

Instantiate script by
number

 set y = new (script 233) 3.6

Instantiate script by
name

set y = new (script "Birth test")
7.921

1, This test was performed with the parent script in castmember slot 233, If the parent
script was in the first castmember slot, the comparative time was only 6.35.

Dynamic Compilation

Throughout this book, I use the term compile, as it’s used by Macromedia, to
indicate the tokenizing of a script. When you recompile a script, Director only
checks the syntax, and for uninitialized local variables. It does not perform any
type checking, nor validate the number of parameters to a function call. There is

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

8

no Lingo equivalent to C’s lint utility, which warns about global variables that
are also declared as locals, unused local variables, and similar potential errors.

Director automatically compiles any uncompiled scripts when you play your
movie. There is no lengthy recompilation of scripts that haven’t changed.

There is no linking of object modules and libraries into an
executable, so Director will not warn you if you refer to a non-
existent function. An error will simply occur at run-time if a
function cannot be found.

In Director, the term linked refers to an external cast library or an external asset
(such as a bitmap, sound, or video). Xtras are in some ways analogous to DLLs
or shared libraries that exist in C programs.

Lingo gives you the convenience of, but is somewhat faster than, an interpreted
language such as BASIC. The same Lingo can be run on multiple platforms,
because it is not stored in a machine-specific format (i.e. assembler).
Unfortunately, you pay for the development benefits with slow runtime
performance.

It is not unusual for Director to lose track of the compiled version of a script,
and you should recompile using Control Recompile All Scripts to
make sure your Lingo is properly compiled. See “Compiling Scripts” in Chapter
2 of Lingo in a Nutshell for details on compiling scripts and on addressing
problems with corrupted scripts.

Lingo’s dynamic compilation allows you to rapidly change and test your Lingo.
Lingo can even be modified or created at runtime by setting the scriptText of
member property or using the do or value command. Even the base class of an
object can be changed dynamically by setting the ancestor property of a
Behavior or Parent script. See Chapter 12, Behaviors and Parent Scripts, in
Lingo in a Nutshell.

Pre-Processor Directives

There is no pre-processor phase to Lingo compilation; therefore, Lingo does not
support any of C’s pre-processing directives such as #define, #ifdef, and
#include. You can simulate pre-processor directives using a constant, global
variable, or system property as shown in Example 20-1.

Example 20-1: Simulating Pre-Processor Directives

on startMovie
 global debug
 if the runMode = "Author" then
 set debug = TRUE
 else
 set debug = FALSE
 end if

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

9

end startMovie

on someHandler
 global debug
 if debug then
 put "Debugging statement for author-time only"
 end if
end someHandler

on anotherHandler
 if FALSE then
 -- This block of code will never be executed
 put "Block of code commented out"
 end if
end anotherHandler

Use the platform property to determine whether you are running under
Macintosh or Windows as shown in Example 8-1 in Chapter 8, Projectors and
the Runtime Environment, of Director in a Nutshell.

Language Definition and Programming Structure

C’s command set is exceedingly simple, and its syntax and structure are
uniform, efficient, and elegant. By comparison, Lingo is lumbering and wildly
inconsistent. Director 7 introduces the dot syntax and bracket syntax for
properties and lists, so at least Lingo is not as verbose as in prior versions.

For example, in Director 6 you’d use:

put the width of member 5 of castLib 1
put getAt (the actorList, 1)

In Director 7, you can instead use:

put member(5,1).width
put actorList[1]

Whereas C provides very low-level access, Lingo provides high-level
commands to play sounds or download bitmaps. Whereas C’s command set is
limited to a few dozen keywords, Lingo has over 1000 commands and properties
specific to media, the GUI, and event processing. Lingo incorporates many of
the support functions ordinarily found in C libraries, such as stdio.

A C program is roughly equivalent to a Director “project,” made up of multiple
movies with multiple scripts, handlers, or functions. Table 20-2 shows some of
the syntactical differences between Lingo and C.

Lingo handlers are declared using the on keyword, but there is no parameter
type-checking or return value type-checking associated with a function
declaration or separate function prototype. Lingo uses the keyword the to
identify properties, such as the clickOn, and the mouseH.

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

10

Table 20-2: Syntactical Comparison Between Lingo and C.

Operation C Lingo

Handler declaration handlerName (a, b, c)

{statements;

}

on handlerName a, b, c

 statements

end

Event Loop or
Messaging Loop

Implemented by programmer Implemented by Director which automatically
dispatches events.

Entry point main() N/A. Events are dispatched by Director to

various scripts.1

Comment characters /* and */, or // -- (two hyphens)

Continuation
character

None. Semi-colon (;) terminates a
statement

Carriage return terminates a statement unless
line ends with the Lingo continuation
character (¬) created with Option-L or
Option-Return (Mac) or Alt-Enter (Win)

Index into an array
(referred to as a
“list” in Director)

array[index]

or use pointer math. Index is zero-
relative.

Director 6:

getAt(list, index)

Director 7:

list[index]

No pointer math. Index is one-relative.

Element in a
structure or list

struct.element

*struct->element

Director 6:

the property of object

Director 7:

object.property

Variable-length
argument lists

varargs macro the paramCount and param(n). See Example
1-38 in Lingo in a Nutshell.

Size of data types sizeof() function Data type sizes are fixed. See length()
function for strings and count() for lists.

Keywords Cannot be used as variable or
handler names.

Most properties include the keyword the.
Variables and handlers can use the same name
as Lingo keywords, but this should be
avoided for clarity.

Case-sensitivity Strictly case-sensitive. Generally case-insensitive. See Appendix C in
Lingo in a Nutshell for exceptions.

1. Initialization code can be placed in your prepareMovie or startUp handlers, which are

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

11

generally called when a movie or Projector starts. See Chapter 2 of Lingo in a Nutshell.

Table 20-3 compares more of C’s and Lingo’s features.

Table 20-3: Operational Comparison Between Lingo and C.

Item C Lingo

Compilation Compiled into native assembler Tokenized into platform-independent byte-
code

Object modules and
libraries for linking

Supports .o and .lib files Uses external cast libraries to hold shared
content or Xtras to extend functionality.

Preprocessor directives Supports #define, #ifdef, #include,
etc.

Not supported. Simulate as shown in
Example 20-1.

Code speed and
memory usage

Extremely small and fast Very slow and fairly large, although
dwarfed by media.

Multimedia support None, but usually provided via
libraries

Extensive cross-platform support,
optimized blitting.

Command set Limited, low-level Extensive, high-level

Data Types Extensive built-in and user-
definable data types. Strongly
typed.

Limited data types, complex objects, and
obscenely loose data typing and conversion.

Parameter type-
checking

Automatic via function
prototyping

Must be done manually using the
paramCount, integerP, floatP, etc. See
Example 1-39 and Chapter 5, Data Types
and Expressions in Lingo in a Nutshell.

Parameter passing Arrays (including strings) are
always passed by reference. Can
force pass by reference for other
data types.

Lists and objects1 are passed by reference.
Other types, including strings, are passed
by value. Can’t force pass by reference.

Compound expression
evaluation

Evaluates only clauses as
necessary

Evaluates all clauses of expressions using
and and or even when not necessary.

Math operations Extensive, including bitwise
operations and complex
(imaginary) numbers.

Limited. No support for complex
(imaginary) numbers. D6 and prior require
Xtra for bitwise operators. D7 has
undocumented bitAnd, bitNot, bitXor, and
bitOr operators.

Math Precision (see
Math Precision below)

Double-precision floats and long
integers

See the maxInteger. Float precision to 15
decimal places. Display precision indicated
the floatPrecision.

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

12

Hexadecimal and Octal
number support

Yes No. although Hex RGB colors can be
specified for D7 color objects. See
http://www.zeusprod.com/nutshell/downloa
d.html for a utility to convert between
different number bases (under
construction).

1. See “Special Treatment of the First Argument Passed” in Chapter 1 of Lingo in a
Nutshell for important details. See also Chapter 6, Lists, in Lingo in a Nutshell.

Macros and In-Line Code

Director does not support macro definitions, or in-line macros, as with C.
Subroutine calls takes several orders of magnitude longer in Lingo than in C, so
you should code in-line when performance is crucial. The File Save as
Java option supported in D6.5 and D7 does support in-line Java calls within
your Lingo code.

Header files

Lingo does not support header files (i.e. include files typically ending in .h), as
does C. This is not necessarily an issue, as Lingo does not require lengthy
declarations, except perhaps for global variables, which must be re-declared
manually in all scripts that use them. Put any common scripts in an external cast
library that can be attached to any Director movie.

Objects and OOP

In Director, an object is an instance of a Parent script or Xtra, or other complex
data structure, including lists. It is not an “object module” resulting from
compilation, as in C. Director has had decent OOP support since version 4, but it
differs from OOP in other languages. Most notably, child objects name their
ancestors, rather than vice-versa, and the base class can be changed dynamically.
Refer to Table 20-12, and to Chapter 12, Behaviors and Parent Scripts , in Lingo
in a Nutshell.

Director 7 introduces two new types of objects: date objects and color objects as
described in the D7 documentation. Refer also to the ilk() function discussed in
Chapter 5 of Lingo in a Nutshell.

Libraries and DLLs

Director requires external procedures to be packaged within Xtras (which are
accessed dynamically at run time) and does not make use of C-style library (.lib)
files or object (.o) files. (Remember, in Director, linking means to attach an
external cast library to a Director movie, not to create an executable from library
and object modules.) Put any common scripts or media in an external cast
library that can be attached to any Director movie.

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

13

Unlike C libraries in which only the required functions are
included in the executable, all Lingo scripts in the current
movie and any linked casts are always loaded into RAM,
whether they are needed or not. They are only unloaded until a
movie ends. Avoid excessive numbers of scripts, or
modularize your movies and casts libraries containing scripts
to minimize RAM usage.

Custom extensions to Director are implemented (in C) as Xtras. Refer to
Chapter 10, Lingo Xtras and XObjects, in Lingo in a Nutshell.

Executables

Director movies are not necessarily compiled into an executable. They can be
incorporated into a Projector (a platform-specific runtime engine) but can also
be left external for easy updating. Use File Create Projector to create
your Projector(s). You must purchase the Director authoring tool for each
platform for which you intend to release a Projector. See Chapters 4 and 8 in
Director in a Nutshell for many more details.

Assignment, Math and Logical Operators

Lingo supports or can simulate most of the assignment, math, and logical
operators supported in C. The syntax of the two languages is identical for those
operations not shown in Table 20-4, such as multiplication, addition, subtraction
and division.

Lingo does not support complex numbers. Prior to Director 7, it does not
support bitwise operators without an Xtra or other custom code, and even in D7
the bitwise operators are undocumented and unsupported.

The log(), exp(), and sqrt() functions are the same in Lingo and C, but power() is
Lingo’s equivalent to C’s pow() function. The sin(), cos(), tan() and atan()
functions are the same in Lingo and C, but asin(), acos(), sinh(), cosh(), tanh(),
asinh(), acosh(), and atanh() are not supported by Lingo. (See
http://www.zeusprod.com/nutshell/examples.html for derivations of the arcsine,
arccosine, and the hyperbolic trig functions using the built-in Lingo trig
functions.) Imaginary numbers are not supported directly in Lingo.

Table 20-4: Math and Logical Operators in C and Lingo.

Operation C Lingo

Assignment1 x = 5; Director 6:

set x = 5

set x to 5

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

14

put 5 into 5

Director 7:

x = 5

Comparison if x == 5 then... if x = 5 then...

Modulo division x % y; x mod y

Modulus and

assignment2
x %= n; set x = x mod n

Increment3 x++; or ++x; set x = x + 1

Decrement3 x--; or --x; set x = x - 1

Raise to an
exponent

pow(x, y) power (x, y)

Square of a number sqr(x) power (x, 2)

Logical and && and

Logical or || or

Logical
exclusive-or

no built-in operator See Example 5-4 in Lingo in
a Nutshell.

Logical not ! not

Not equal to != <>

Bitwise and & bitAnd4

Bitwise or | bitOr4

Bitwise
exclusive-or

^ bitXor4

Bitwise not ~ bitNot4

Bitwise shift-right
and shift-left

>>

<<

no Lingo equivalent

Conditional
assignment

var = (expr) ? val1 : val2; if (expr) then
 set var = val1
else
 set var = val2
end if

1. C programmers will often forget to use the set keyword when assigning variables. Prior
to D7, a statement such as x = 5 will cause a, “Misplaced Operator,” error.

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

15

2. C’s *=, /=, +=, and -= operators are not supported in Lingo, but can be simulated in
an analogous manner.

3. C will increment an array pointer by the size of the data type. Lingo does not support
pointer arithmetic.

4. Director 7 only (unsupported and undocumented). In D6, use Xtra or custom Lingo.

Math Precision

C supports signed and unsigned short, standard, and long integers and both
single- and double-precision floats. C’s native float data type is double-
precision, which use 8-bytes under Windows and 10-bytes on the Macintosh.
Lingo uses 4-byte integers (whose range, as indicated by the maxInteger, is 231-
1). The floatPrecision property controls the display of floating-point numbers,
whose accuracy is approximately 15 decimal places. Refer to Chapter 8, Math
and Gambling, in Lingo in a Nutshell for details on math precision and overflow
conditions.

Loops, Flow Control and Multi-line Statements

Lingo and C provide similar constructs for looping and flow control, but the
keywords and syntax are somewhat different. Whereas C generally uses curly
braces ({}), Lingo uses separate keywords to indicate the beginning and end of
multi-line structures, as shown in Table 20-5. In C, you can declare a local
variable within a code segment offset by curly braces, and it will have scope
only within the braces. Lingo supports scoping within a handler, but not
subscoping within a multi-line structure. You should declare your variables as
described in Chapters 1, 3, and 12 of Lingo in a Nutshell.

As does C, Lingo re-evaluates the conditional expression each time through the
loop. Therefore, any changes made to the index variable in a loop affect the
number of loop iterations.

Lingo will evaluate all clauses within a logical expression whether it needs to or
not. This is inefficient, and differs from C, which only evaluates the minimum
clauses required to evaluate the overall logical expression. Lingo’s insistence on
evaluating all clauses may cause errors in code that relies on C’s style of
expression evaluation. Refer to Boolean Expressions and Logical Operators and
especially Example 5-3 in Lingo in a Nutshell.

Table 20-5: Flow Control Structures Lingo vs. C

Operation C Lingo

multiple-statement
structures

{} on...end, if...end if, case...end case,
repeat...end repeat, tell...end tell,
beginRecording...endRecording

Loop while an while (expression) repeat while expression

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

16

expression is TRUE {statement;} statement
end repeat

Loop, checking
condition at end of
loop

do {statement;}
while (expression);

No exact equivalent. Simulate with
standard repeat...while loop.

Loop for a specific
number of iterations

for (x=1; x++; x< n)
{statement;}

repeat with x = 1 to n
 statement
end repeat

Loop through items
in a list

for (x=0; x++; x< n)
{y = array[x];}

repeat with y in list
 statement
end repeat

Next loop iteration continue next repeat

Abort loop break exit repeat

Switch or case

statement 1

switch (expression) {
case value: statement;
 break;
default: statement;}

case (expression) of
 value: statement
 otherwise: statement
end case

Quit the program exit quit or halt

Go to code label goto No equivalent. See Table 20-11.

Abort the call stack No equivalent abort

1. Lingo execution does not “fall through” from one clause of the case statement to the
next, despite lack of a C-like break statement.

Parameter and Variables

Lingo handles parameter passing and variables very different than in C and most
other languages.

Passing Parameters

In Lingo, most data types, including strings, are passed by value, except lists
(and other objects) which are passed by reference. Therefore, changing the
contents of a list within a handler will change the list in the calling routine. See
Chapter 6, Lists, in Lingo in a Nutshell for more details. Similarly, you cannot
change individual elements of the vertexList property of vector shape members
in D7, because Director operates on a copy of the vertexList. You must reassign
the entire vertexList at once, or use the vector shape functions addVertex(),
moveVertex(), etc.

In C, arrays (including strings, which are arrays of chars) are passed by
reference by default. You can pass the address of (i.e. a pointer to) a variable, so
that a handler can modify multiple variables. Lingo doesn’t support indirection,

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

17

so non-list data types can only be passed back to the calling routine using a
return statement (or accessed indirectly via a global declaration). In Lingo, you
can instead pass multiple parameters in a list, which can then be modified
individually and passed back via the list structure.

In Lingo, the parentheses surrounding the arguments to a function are mandatory
only when that function returns a value. Unlike C, the parentheses are optional
when the calling routine is not receiving a return value.

In Lingo, if the calling routine omits an argument to a function, the
corresponding parameter inside the function is set to VOID. In C, an error
would be generated by the pre-compiler, or the omitted argument would result in
the corresponding parameter holding a meaningless value.

Lingo allows nested function calls, as does C, such as:

set x = random (max(y, z))

Unlike C, Lingo can not perform a variable assignment within a compound
expression (recall that prior to D7, Lingo assignment required the keyword set).
Although the = operator is used for both assignment and comparison in Lingo,
within a compound expression it is always treated as a comparison operator:

The following would be evaluated differently in Lingo than in C:

if x = 1 > 0 then...

Assuming it was converted to C syntax, C’s precedence would cause it to be
interpreted as follows:

if x = (1 > 0) then...

The variable x would be set equal to the result of the expression (1>0).

In Lingo it would be evaluated differently. First of all, it would cause a syntax
error unless x had previously been declared as a global or property variable, or
used as a local variable. If x was already declared, the expression would be
evaluated as:

if (x = 1) > 0 then...

In Lingo, x = 1 would be evaluated first and the logical result would be
compared to 0. Note that in C, the >, <, >=, and <= operators have precedence
over = and ==. In Lingo, the = operator has the same precedence as <, >, <>, >=,
and <=, and these operators are evaluated left to right in the order in which they
are encountered.

Refer also to “Parameters and Arguments” starting on page 55 in Chapter 1 of
Lingo in a Nutshell.

Lingo variable and function names are case-insensitive, and can be exceedingly
long (about 250 characters). In C, variable and function names are strictly case-
sensitive. See Appendix C in Lingo in a Nutshell for situations in which Lingo is
case-sensitive.

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

18

Declarations, Type Checking and Conversion

In comparison to C, Lingo’s data typing is loose to the point of being obscene.
Lingo never explicitly declares a variable’s data type, nor a function’s return
type, as opposed to C which is strongly typed. A Lingo variable’s data type is
implicitly defined by the type of data assigned to it, and can be changed by
simply assigning a new datum to it.

Data Types

Except for lists (and objects), all Lingo data types, including strings, are passed
by value not by reference. There is no exact Lingo equivalent for many C data
types, but Table 20-6 shows the approximate Lingo and C data type
equivalencies. In C, the storage requirements for each data type are machine-
dependent—the sizeof() function indicates the number of bytes required for the
item. In Director, the size of each data type is fixed, not machine-dependent.
Note that Lingo does not support typedef for creating your own data types.

While a variable exists, even if it is set to VOID, it always requires at least 8
bytes:

Local variables (those used within a single handler) are allocated when the
handler is called and freed when the handler terminates.

Property variables are allocated when the object, such as a Behavior script,
Parent script or Xtra instance, is instantiated. They are freed when the object
is disposed of (see below).

Global variables persist for the life of Director or the Projector. Using
clearGlobals will free the storage used for complex data types, but the
global itself will still occupy 8 bytes.

Symbols persist for the life of Director or the Projector.

String, integer, and floating-point constants are freed after the handler in
which they are used terminates.

Child Objects and Xtra Instances
Every instance of a Parent script, Behavior, or Xtra occupies memory until
it is no longer needed. Avoid instantiating thousands of objects, and clear
any objects once you are done using them so that Director can reclaim their
memory. Avoid two objects pointing to each other or objects that have a
reference to themselves. When you delete an object, make sure that any
properties that it has that are references to other objects, are also set to
VOID or zero.

Table 20-6: Lingo and C Data Type Comparison

Data Type C Size in C Lingo Size in Lingo

array of elements array Dimension * bytes per
element, or malloc’ed RAM

list sum of sizes of all

elements1

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

19

single character char 1 byte string 8 bytes + 1 byte
per character

character string char * array of 1-byte elements string 8 bytes + 1 byte

per character1

enumerated data
type

enum n * bytes per element property list sum of elements1

floating-point

number2
float, double,
long double

4, 8, or 10 bytes on PC, 8 or
10 bytes on Mac

float 16 bytes

integer3 short, int, or
long

1 byte, 2 or 4 bytes, and 4
bytes

integer 4 bytes

structure struct sum of elements property list, or
properties of an
object

sum of elements1

Complex objects,
such as child
objects

struct sum of elements object sum of size of
properties, plus
headers (varies for
each type)

pointer * 4 bytes object 8 bytes

void data type void 4 bytes See VOID
constant

4 bytes

media array dimensioned by malloc picture, media,
script, sound

Depends on media
type, dimensions,
sampling rate, etc.

symbol N/A N/A symbol 8 bytes

1. Lingo lists and strings are allocated space dynamically as needed.

2. Lingo floating-point precision is 15 decimal places. The floatPrecision property affects
only the display precision, not the calculation precision. See Chapter 8 in Lingo in a
Nutshell.

3. Lingo does not support separate types for long (long integer), short (short integer),
unsigned int, unsigned long, and unsigned short. A Lingo integer is similar to a C long.
The maxInteger property returns an integer’s maximum range (+/- 231-1)

Data Type Checking

Lingo does not verify the number or type of arguments to a function call, nor
does it support function prototyping, as in C. In C, because every variable’s type
is fixed, it is assumed that you know a datum’s type. Because Lingo is so
loosely typed, it provides functions—most notably ilk(), integerP(), floatP() ,
stringP(), objectP(), and voidP()—to determine a datum’s type. Refer to Tables

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

20

5-3 and 5-4 in Lingo in a Nutshell. Refer to the Example 1-39 in Lingo in a
Nutshell for techniques for verifying parameters to a function manually.

 Data Type Coercion and Conversion

Lingo casually converts between various data types with sometimes puzzling
results, as opposed to C-style coercion and conversion which is usually explicit,
although C performs automatic conversion when passing certain data types to
functions (see Table B-3 in Appendix B of Practical C Programming by Steve
Oualline, published by O’Reilly and Associates).

Refer to “Type Assignment and Conversion” in Chapter 5 of Lingo in a
Nutshell. Lingo and C use different syntaxes for converting and coercing
different data types, as shown in Table 20-7. Note that in C, one needs to know
the original type of the datum that is being converted in order to select the
proper function. C also supports type casting, which has no direct analog in
Lingo besides actual type conversion. In C, a single memory address can be
accessed with pointers of differing data types, which would allow it to be
accessed, say, in either 1-byte or 4-byte chunks. There is no need to explicitly
convert a single ASCII digit to an ASCII char in C—the datum can simply be
coerced to a (char).

Table 20-7. Data Type Coercion and Conversion in Lingo and
C

Coerce to C Lingo

integer (int), ftoi(), ftol(), strtoi(), strtol(),
strtoul(), atoi(), atol()

integer()

float (float), (double), atof(), itof(), strtod(),
strtof()

float()

character or string (char), (char *), itoa() string()

ASCII character (char) numToChar()

ASCII code (short) charToNum()

Lingo’s value() function does not technically perform type conversion. It
actually invokes the Lingo interpreter to evaluate a string. It usually evaluates
strings as if they are variable names and evaluates numeric characters as either
integers or floats.

Data Storage Classes and Scope

Lingo property variables and global variables are persistent, in that they
maintain their values even when the current handler is exited. Lingo does not
support static function declarations. All functions within a Score script or Parent
script are implicitly static (hidden from other scripts). Handlers in Movie scripts

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

21

are never static.

Table 20-8 compares Lingo and C data storage classes. There is no Lingo
equivalent for the register (register variable) C data storage class.

Table 20-8: Lingo and C Data Storage Classes.

Operation C Lingo

global variable extern or static global

local variable auto no declaration needed

property variable static property

Declare a constant #define constant No true equivalent.1

1. Director pre-defines the constants BACKSPACE, ENTER, EMPTY, FALSE, QUOTE,
RETURN, TAB, and TRUE, plus PI, SPACE, and VOID, which were added in Director 6.
Define string constants using #symbolName. See Symbols” in Chapter 5 and also Chapter
19, The Lingo Symbol Table in Lingo in a Nutshell.

Lists and Arrays

Lingo “lists” are roughly equivalent to arrays in C and Table 20-9 compares the
two. Unlike C arrays, Lingo lists are allocated automatically, and can change
size arbitrarily. There is no dimension or malloc statement in Lingo, and a single
list can contain data of various types simultaneously. A two dimensional array is
implemented as a list of lists in Lingo, but it cannot be referenced as a one-
dimensional array, as is often done in C. Using an index which exceeds the
length of the array can trample memory is C, or return a meaningless value,
without warning. In Lingo, it would either generate an error, or cause the list to
be lengthened. Unlike most Lingo data types, lists are passed by reference, not
value. See Chapter 6, Lists, in Lingo in a Nutshell for more details. Note that
strings (discussed below) are a separate data type in Lingo.

Table 20-9: Arrays in C versus Lists in Lingo.

Array Operation C Lingo

Allocation Dimensioned when declared, or
allocated with malloc or alloc

Allocated automatically as elements are
added or deleted.

Array indices Zero-relative One-relative

List elements All elements must be of the same
type

A single list can hold elements of different

data types.1

Using index beyond
last element’s index

Reads or writes past end of
allocated array without warning

Error is generated when reading past last
element. List is lengthened if adding

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

22

(may be a compiler option). elements or characters past end.

Declaring a two
dimensional array

Specify list of pointers, and
dimension at least one index

Specify a list of lists, or use a property list
(2x1 array). No need to predefine
dimensions.

Accessing two
dimensional array

Can be accessed with a single index Must be accessed as list of lists.

Passing as a parameter Passed by reference Passed by reference

1. All elements in a linear list must be simple elements, whereas all elements in a
property list must be property:value pairs.

In Director 7, lists can be accessed with C-like syntax. For example, the first
element of a list named numbers could be accessed as:

numbers[1]

Likewise, a list of lists in D7 can be accessed as would a two-dimensional list in
C. The third element of the fifth sublist would be accessed as:

myList[5][3]

Strings

In C, a string is not a built-in data type; it is implemented as any array of type
char, with a null character (ASCII 0) as a terminator. C strings can be
manipulated as one would manipulate any C array. In Lingo, a string is a unique
data type, and there is no single-byte data type, such as C’s char type. When
working with Lingo strings, you need not allocate a specific number of bytes,
nor worry about null-termination. A Lingo string with no characters has zero-
length, as reported by the length() function. In C, a string with no characters,
also has zero length, as reported by strlen(), which doesn’t count the null-
terminator. Lingo strings are allocated automatically and dynamically. Whereas
a Lingo field is limited to 32000 characters (31.25 KB) prior to D7, a string
variable can be much larger. I created a string with a length of almost 2 MB.
Unfortunately, because Lingo strings are passed on the stack by value (which is
very inefficient), attempting to call the length() function with such a large string
can overflow Director’s stack. The length of a C string (array of char) is
limited only by available RAM. Because C strings are passed by reference like
any other array, even exceedingly large C strings will not overflow the stack.

Passing strings on the stack by value is one reason Lingo’s
text processing is egregiously slow.

You cannot directly modify a string argument to a Lingo function. Instead, you
must modify a copy of the string, and pass it back as a return value. Table 20-10
compares strings in C and Lingo. Refer to Chapter 7, Strings, in Lingo in a
Nutshell for many more details on string manipulation in Lingo, especially
concatenation. See Chapter 10, Keyboard Events, in Lingo in a Nutshell for

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

23

details on user input of strings. See Chapter 14, External Files , in Lingo in a
Nutshell for details on reading and writing strings using external files. See
Chapter 12, Text and Fields, in Director in a Nutshell for details on displaying
strings on Stage in #text, #richText, or #field cast members.

Table 20-10: Character Arrays in C versus Strings in Lingo.

Array Operation C Lingo

Allocation Allocated as an array of chars Allocated dynamically as data is added
to string.

String manipulation Accessed as an array of chars, or
with common library functions

Accessed with numerous Lingo
commands.

Null String Single terminating character
(ASCII 0)

EMPTY

Access single character Access as with any array, by index char x of string

chars x to y of string

Accessing character
beyond string length

Reads or writes past end of
allocated array without warning.

EMPTY is returned when reading past
last character. List is lengthened if
adding characters.

Passing as a parameter Passed by reference Passed by value

String length strlen(char *) length(string)

Length of empty string 0 (excludes null terminator) 0 (see EMPTY)

Size limit Available memory based on alloc
or malloc

Approximately 2 MB, after which it
may overflow the call stack

String concatenation strcat() & or && operator

String copy strncpy(), strdup() set newString = oldString

String literals with
escape characters

Use backslash character to “escape”
unprintable or illegal characters

No direct equivalence. Use string
concatenation with Lingo constants
(including QUOTE) or charToNum()

Formatted strings printf() put "String" && variable

Event and Error Trapping

Director implements a so-called “event loop” in which it continually waits for
events. In Lingo, you need only create handlers, such as on mouseUp, that
respond to these events, such as mouseUp. See Chapter 2, Events. Messages and
Scripts, in Lingo in a Nutshell . There is no need to “subscribe” to any particular

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

24

events, as events are dispatched to the appropriate scripts automatically.

Director automatically dispatches events to the correct sprite.
For example, you need not attempt to determine which sprites
were clicked from a frame script. Instead attach appropriate
mouse event handlers directly to the sprites of interest.

Frame scripts that manually check which sprite was clicked are a waste of time
and extremely poor style. Avoid the following:

on exitFrame
 if the clickOn = 1 then
 -- Do action for sprite 1
 else if the clickOn = 2 then
 -- Do action for sprite 2
 end if
end

Instead separate scripts containing on mouseUp handlers to the sprites of
interest. For example:

on mouseUp me
 -- Perform some action for this sprite
end

Similarly, you should not attempt to loop within an on keyDown handler while
waiting for a specific key, nor attempt to manually flush unwanted events. If
your on keyDown handler does not detect the key of interest, simply loop in a
frame script using:

on exitFrame
 go the frame
end

If you allow the playback head to loop as above, Director will continue to
process events. Simply ignore those that are not of interest to you.

Error Trapping and Return Values

Lingo does not have robust error-trapping, nor true interrupts. Errors typically
generate an alert dialog box. You can perform your own error checking to
prevent this. See the section describing the alertHook property in Chapter 3,
Lingo Coding and Debugging Tips, in Lingo in a Nutshell. You can use the
result to get the return value of the last function in Lingo, as you would use
getLastError() in C.

Debugging

Director has a debugger (see Chapter 3 in Lingo in a Nutshell) but it is not as
robust as traditional debugging tools. For one thing, you can change the code at
run time, in which case the Debugger may warn you that scripts need to be
recompiled! If you close the Debugger window, the Lingo execution continues

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

25

and Director regains control. You must stop the Director movie itself to halt
Lingo execution and recompile your scripts.

In C programming, the application programmer is at the top of the hierarchy. If
you set a breakpoint in the C debugger, you can step through your program
indefinitely. Even if you call library routines to perform lower-level functions,
control always boomerangs back to your routine in the debugger.

By contrast, in Director your Lingo code is sandwiched between the library of
Lingo commands (on the bottom) and Director’s main event loop (on the top).
The Debugger can only debug Lingo code. It has no access to the code of Xtras,
Director itself, or the low-level Lingo library which are written in C. Because
Director’s event loop is above your Lingo code, it periodically regains control
and there is nothing you can do to stop it (short of manually replicating all of
Director’s event processing in a repeat loop, which you do not want to do).

Suppose you set a breakpoint in an on mouseDown handler. At the end of that
handler, even if you single-step through your Lingo code, control returns to
Director’s event processing loop. The only way to regain control is to set
another breakpoint in another Lingo handler that you expect to be reached at a
later time. Thus, there is no way to follow a given event as it passes through the
Lingo messaging hierarchy (from sprite scripts, to frame scripts, to movie
scripts, etc.).

Likewise, there is no way to cause an immediate break into whatever Lingo code
may be executing at the moment. Director will only break into Lingo at which
you have previously set a break point. The material in Chapters 1 through 3 of
Lingo in a Nutshell will help you to set your breakpoints where they are sure to
be reached.

You can interrupt execution of a Director movie using Cmd-. (Mac) or
Ctrl-. (Windows), but you aren’t afforded the opportunity to enter the
Debugger when the movie halts. In fact, there is a good chance that Director’s C
code, and not the Lingo interpreter, is running at any given time. So there is no
way that Director can pass control to the Lingo Debugger at the arbitrary time at
which the user halts the movie’s execution.

File I/O, Character Streams, and Printing

Most Lingo file input and output is done using the FileIO Xtra, which is
included with Director. Other Lingo commands, such as setPref can be used to
write small text files. Xtras are available to write binary files or communicate
with the serial port, etc. Refer to Chapters 13 and 14 in Lingo in a Nutshell.

Editable fields automatically accept keystrokes, but you can use an on keyDown
handler to trap keyboard input explicitly. Refer to Chapter 10, Keyboard Events,
in Lingo in a Nutshell.

Instead of C’s formatted printf statement, use Lingo’s put command to print
items in the Message window, which behaves as stdout. Lingo does not support

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

26

“pipes” or a general “redirection” mechanism as is common in Unix and DOS,
but you can redirect the output from the Message window to a log file using the
traceLogFile property.

Operators and Keywords with Different Meanings

The same symbols, operators, or keywords may have entirely different meanings
in Lingo versus C, as shown in Table 20-11.

Table 20-11: Symbol and Keyword Differences in Lingo and C

Symbol or
Keyword

C Lingo

[] Enclose expression that yield array
subscripts

Enclose elements in list declaration. In D7,
square brackets are also used to access a list
element or a chunk expression within a string.

& Address operator String concatenation

&& Logical and String concatenation with space added

, (comma) Comma operator used to separate
multiple operands on right side of
assignment statement.

Separates values in subordinate clause of case
statement

= Assignment Assignment or comparison

* Multiplication or indirection Multiplication only

| Bitwise inclusive-or Used to define custom menu items with
installMenu

: Used with conditional operator ?: Separates a property and its value in a property
list

-- (two minus
signs)

Decrement operator Comment delimiter

case Subordinate clause in a switch statement Starts a case statement

char Declares a character variable Refers to a character in a chunk expression

continue Continues with next repeat loop or for
loop iteration

Restarts the playback head after a pause
(obsolete)

delete Deletes a pointer Deletes characters from a chunk expression

do Part of a do...while loop Executes a command string

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

27

exit Quits program Exits current handler

goto vs. go to goto jumps to a named section of the
current handler

go to moves the playback head to a different
frame (does not affect Lingo execution).

int or integer int declares an integer variable, or casts a
value to (int).

integer() coerces data to an integer type

long long declares a long integer long affects the date and time format

RETURN Returns data from function Returns data from function or the RETURN
constant

short short declares a short integer short affects the date and time format

static static declares a static variable or private
function

The static of member property controls
whether Flash sprites are redrawn.

void void data type VOID constant

Lingo Object Oriented Programming Versus C++

Lingo provides an object-oriented model, described in Chapter 12, Behaviors
and Parent Scripts. Director allows you to mix and match OOP and procedural
programming. Table 20-12 compares the terminology for Lingo and C++.

Table 20-12: Lingo vs. C++ Terminology

C++ Term Lingo Term

Class Parent script

Base class or super class Ancestor script

Instance Child Object or child instance

Inherited or derived class (descendant) A child object with an ancestor

Handler or procedure Method

Instance variable or member variable Property variable

Constructor new method

Deconstructor None. Set variable referencing object to
0 or VOID.

this me

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

28

Class Hierarchy and Inheritance

Lingo’s class hierarchies are much looser than C++’s. In C++, a class’s base
class is defined in the constructor, before the class is even compiled. In Lingo, a
child object’s ancestor property is set at run-time, and can even change
dynamically. In Lingo, a child object can only inherit from a single ancestor
script (multiple inheritance is not supported). For a child object to inherit
additional methods from additional ancestors, its direct ancestor would have to
declare its own ancestor, and so on. Note that in Lingo, the term parent refers
not to a parent class or base class, but merely to the parent script (i.e. class
definition) of which the child object is an instance. In the simplest case, a single
parent script is instantiated to create one or more copies of itself (so-called child
objects). Thus a child object is not necessarily a descendent of some base class,
and its parent script is not necessary an inherited or derived class.

The following features of C++ have no equivalent in Lingo:
Abstract Class

Multiple Inheritance

Templates

Encapsulation

It is impossible to encapsulate a child object fully. Lingo objects can be
manipulated by some list functions, and they are passed by reference, as are
Lingo lists. The Lingo count() and getAt() functions can extract a child object’s
property variables. These properties can also be read or set by code external to
the object using:

set the property of childObject = value

In D7 notation, you can use:

childObject.property = value

There is no Lingo equivalent to C++’s static, public, private and
friend handlers. Methods within a child object are private by default, but any
message can be sent to a child object using the call() function. It’s ancestor can
be called using callAncestor(). A child can refer to its ancestor’s properties
using:

set the property of the ancestor of me = value

Conclusion

Lingo and Director will not impress most C developers immediately (many of
whom think scripting languages are for wimps). But as you learn more about
Director, you’ll find Lingo well-suited to multimedia development. Hopefully
this chapter has shortened Director’s learning curve, and will help you to tailor
your programming style to Director’s strengths, while side-stepping its
weaknesses. The second biggest obstacle facing new Director developers is that
they are not hooked into the larger Director community (the biggest obstacle is
your ego). Refer to the resources cited in the Preface of Lingo in a Nutshell

DRAFT, August 2, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

29

which are chock-full of very experienced Director developers, many of whom
know more about Director than you know about C (if only because there is so
much more to know).

You Can Still Call Home

An adept C/C++ programmer can develop their own Xtras to extend Director in
outlandish ways. Refer to Chapter 13, Lingo Scripting Xtras and XObjects, in
Lingo in a Nutshell and to Chapter 10, Using Xtras , in Director In a Nutshell.
For details on some of the existing Xtras see the URLs in the Preface that point
to Macromedia’s Xtras Developer Center .

If nothing else, Lingo in a Nutshell and Director in a Nutshell should help you
complete a given project in Director, after which you can flee back to C
development if you so choose. :-)

As of March 31, 1999, the Director 7 version of the Xtra Developer’s Kit (XDK)
has not been released. The D6 XDK can be used to develop Xtras for D7 until
the new XDK is available. The subject of Xtras development in C is outside the
scope of this discussion, but the resources cited at
http://www.zeusprod.com/nutshell/links.html should get you started.

