
DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

1

21
Custom MUI Dialogs

Copyright 1996-1999. Bruce A. Epstein. All rights reserved.

This bonus chapter covers creating custom dialog boxes with the MUI Dialog
Xtra. The latest version of this document can be found in Acrobat PDF format at
http://www.zeusprod.com/nutshell/chapters/muixtra.html. This chapter is a
superset of Chapter 15, The MUI Dialog Xtra, in Lingo in a Nutshell.

The MUI Xtra was introduced in Director 6 and can create a variety of custom
dialog boxes, including Alert boxes. It is used during authoring by Director and
other Xtras to generate custom dialog boxes. It is installed in the Xtras/Media
Support subfolder by default.

If using any of the MUI Xtra’s methods to create custom dialog boxes at
runtime, you must include the Xtra named "MUI Dialog" (for Macintosh) or
"MUI Dialog.x32" (for Windows) with your Projector, presumably in an Xtras
folder one level down from your Projector. (I recommend against bundling Xtras
into Projectors. See Chapter 10, Using Xtras , in Director in a Nutshell for
details.)

The MUI Xtra's main limitation is that it does not support Windows 3.1 (for
users of D6.5 and prior versions), nor is it available for Shockwave. If you are
using 16-bit (Windows 3.1) Projectors, consider using the baMsgBox function in
Buddy API (http://www.mods.com.au/budapi/), which can create simple dialogs.
The MUI Xtra is not marked “Safe for Shockwave”, so Shockwave developers
should use one of the alternatives discussed in the Chapter 14, Graphical User
Interface Components, in Director in a Nutshell.

Obtain the latest version of the MUI Dialog Xtra for your version of Director as
part of the Director 6.0.2, Director 6.5, or Director 7.0.2 update from
http://www.macromedia.com/support/director/upndown/updates.html.

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

2

This chapter was tested using MUI Dialog Xtra version
6.0.2r33 dated December 12, 1997. Only minor differences,
and perhaps some bug fixes, are expected in later versions.

The D6.0.2 updater may fail if you had installed any of the Macromedia Xtras
that installed a later version of the MUI Xtra. Update to D6.0.2 before installing
Macromedia Xtras such as the Flash Asset Xtra or Custom Cursor Xtra, which
were sold separately for a brief time before D6.5 was released, and which
included interim releases of the MUI Xtra.

Simple MUI Alert Dialogs

The MUI Xtra's Alert() command creates modal dialogs with up to three buttons.
As with the standard Lingo alert command, it's text is limited to 255 characters,
so you'll need to create a custom dialog (see below) for longer text. Alert()
accepts a property list defining the button choices, the text to display, etc.
Example 21-1 creates the dialog box shown in Figure 21-1.

Figure 21-1: Two-Button Alert Dialog

Example 21-1: Standard Multi-button MUI Alert Dialog

on testMUIalert
 -- Create an instance of the MUI Xtra
 set MUIobject = new (xtra "MUI")
 -- The MUI Alert doesn't beep, so let's do so manually.
 beep
 -- Define the attributes of the dialog in a property list
 set alertPropertiesList = ¬
 [#buttons: #YesNo, ¬
 #default: 2, ¬
 #title: "Quit", ¬
 #message: "Are you sure you want to quit?", ¬
 #movable: TRUE, ¬
 #icon: #stop]
 -- Post the dialog and wait for a user response

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

3

 set answer = Alert (MUIobject, alertPropertiesList)
 -- Dispose of the MUI Object
 set MUIobject = 0
 -- Check the answer against the possible user choices
 put "User chose button" && answer
 case (answer) of
 1: -- User chose first button (in this case 'Yes')
 halt -- the user chose to quit in this case
 2: -- User chose second button (in this case 'No')
 go frame 1 -- the user didn't quit, so start over
 end case
end testMUIalert

Note that Alert() returns an integer indicating the number of the button that the
user chose. For example, if the alert dialog box’s buttons are Yes and No, a
return value of 2 specifies that the second button (No) was pressed.

Table 21-1 shows each item used to define the alert dialog box. You need only
specify the properties for which the default is inadequate, such as #message and
#buttons.

Specifying the #RetryCancel option for #buttons may crash
when creating the dialog in D7. I am not sure about its
reliability in D7.0.2, or D6.5 and prior.

Table 21-1: MUI Alert Properties

Property Usage Range

#buttons The buttons that appear in the alert (in the
order in which they are named in each
symbol, such as #AbortRetryIgnore)

#AbortRetryIgnore, #Ok (default),
#OkCancel, #RetryCancel #YesNo,
#YesNoCancel

#default The ordinal number of the button to use

as the default.1 Specify 0 for no default.

0, 1, 2, or 3 (up to maximum number
of buttons). Default is 1.

#icon The type of icon that appears in the alert

dialog.2
#caution, #error, #note, #question,
#stop (default is no icon). See Figure
21-2.

#message Message string that appears in the alert
dialog.

Any string up to 255 characters
(default is "<Null>" under Windows,
and EMPTY on Mac)

#movable3 Indicates whether the dialog is

moveable.4
TRUE or FALSE (default is FALSE
on Mac and always TRUE under
Windows).

#title Title string for the alert dialog.4 Any string of up to 255 characters

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

4

(default is "<Null>")

1. The default button choice is shown with a thick border and is selected if the user hits
RETURN. If #default is omitted, the default is 1. For example, if #buttons is
#YesNoCancel, the default choice would be the first button, in this case "Yes".

2. Omit the #icon property from the list to prevent an icon from being used. Specifying an
invalid #icon, such as 0 or an invalid symbol, prevents the dialog from appearing and
may cause a crash.

3. #movable is spelled without an "e" (differs from the moveableSprite of sprite property).

4. The dialog is always moveable and always contains a title bar under Windows,
regardless of the #movable property. On the Macintosh, the #title is ignored (the alert
box has no title) unless #movable is TRUE. If #movable is TRUE and #title is not
specified, the title displays as "<Null>". Use #title:EMPTY to blank the title bar.

Note in Figure 21-2 that the appearance of the icons is platform-specific, and the
same graphic is used for multiple #icon settings in some cases.

Figure 21-2: Macintosh and Windows MUI Dialog Icons

Custom MUI Dialog Boxes

The MUI Xtra can create and control custom dialog boxes containing buttons,
editable fields, labels, sliders, popup menus, and even bitmaps. It also creates
simple alert dialogs as covered above, and file dialogs for saving and opening
files or entering URLs as covered on pages 375-376 of Chapter 14, External
Files, in Lingo in a Nutshell. (Note that the FileOpen method failed in the D6.0

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

5

version of the MUI Xtra, but it was fixed in the D6.0.2 release.)

MUI custom dialog boxes:

• Can contain numerous user interface elements

• Can include horizontal scrolling editable text fields

• Allow clipboard operations for editable text [doesn't seem to work in my
tests?]

• Can be updated dynamically based on a user's choices.

• Use less memory than a MIAW used to simulate a dialog box

• Have the platform-specific appearance of native dialog boxes

• Select the default button when the user presses Enter or Return

• Can be canceled by pressing ESCAPE or Command-period.

MUI custom dialog boxes can contain very large text strings (more than 255
characters) but only if manual carriage returns are included in the string (every
100 characters or so) to break it onto multiple lines. Refer to the #label widget
below.

Making Sense of MUI

The MUI Xtra is more powerful than your feeble mind can comprehend (without
my help). If you don't believe me, type this in the Message window:

put mMessageList (xtra "MUI")

I'm convinced that MUI stands not for Macromedia User Interface, but for
Minimally Understandable Interface , Mostly Unintelligible Instructions, or
Many Ungodly Items.

You must understand Lingo lists thoroughly to have any
prayer of using the MUI Xtra. See the Lists chapter.

The MUI Xtra is listed under "MMUI Xtra" (not MUI Xtra) in the D6 Help
system index with links to related topics. The D6 for Macintosh CD has a very
enlightening sample movie under Director 6 CD:Goodies:Movies:dialogs.dir 1.
It is not included on the D6 for Windows CD or in the D6.0.2 updater, but you
can download it from ftp://ftp.shore.net/members/update/dialogs.zip. It may
also be included on the D6.5 updater CD under the “Goodies” folder.

UpdateStage has excellent discussions of the MUI Xtra and its inability to create
dialogs bigger than the screen, a small sample Director movie, and a detailed
MUI article by Macromedia's John C. Ware at:

http://www.updatestage.com/previous/970801.html#item3
ftp://ftp.shore.net/members/update/muihowto.zip

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

6

ftp://ftp.shore.net/members/update/muilingo.zip

I owe John a debt of gratitude as his article clarified some points not covered in
the on-line Help. It is getting a bit dated, and has some minor errors, but is very
informative. There is no way I could possible verify every feature and quirk of
the MUI Xtra, but between John's article and the discussion that follows you
should have an excellent foundation. When in doubt, you should trust your own
instincts and perform your own tests, as it is certainly possible that I have made
minor mistakes regarding the myriad properties. Furthermore, it may have
changed in subsequent versions of the MUI Dialog Xtra (these tests were made
with version 6.0.2r33 but I don’t think major changes have been made in later
versions).

The examples in this chapter, plus more, are available at the
download site cited in the Preface.

Search Macromedia's site for the keywords, "MMUI", "MUI "and "MUIdialog"
to find the relevant technotes pertaining to the MUI Xtra. User interface
guidelines for laying out your own dialog boxes start at:

 http://www.macromedia.com/support/xtras/how/mui/tips.html

If you don't limit the search to just the Director technotes, you'll find::

http://www.macromedia.com/support/xtras/xdks/xdk_d6a4/docs/html/mudg/inde
x.htm.

(The MOA XDK documentation is also available in HTML format on the
Director 6 CD under the Macromedia/xdk_d6a4 folder). Note that MUI's full
power is available to MOA Xtras via the IMUIdialog interface, not all of which
is exposed to Lingo (and some properties have different names).

Macromedia has posted a detailed white paper on the MUI Xtra at:

http://www.macromedia.com/support/director/how/d7/MUI.html

See also:

http://www.macromedia.com/support/director/how/subjects/usingxtras.html

UpdateStage publishes the MUI Maker Xtra by RavWare, which allows you to
lay out your dialog visually and then writes the Lingo code for you. It does not
create the callbacks for fancy custom dialogs, but presumably saves you layout
time. I haven’t tested it, but UpdateStage’s products and support have a good
reputation:

http://www.updatestage.com/xtras/muimaker.html

The free MUIComposer Xtra by Rainer Ohman may provide similar
functionality, but I haven’t tested it:

http://home1.swipnet.se/~w-10540/mui.htm

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

7

The Life of a Dialog

Let's make sense of MUI in stages. To create and use a custom dialog we will:

1. Create an instance of the MUI Xtra to be used for subsequent operations.

2. Initialize the dialog by defining the window itself, and the user interface
elements (widgets) within it. (Not to be confused with the Widget Wizard.

3. Display the dialog.

4. Detect user actions, and update the dialog in response.

5. Dismiss the dialog.

Tables 21-2 lists the MUI Xtra commands related to custom dialogs in the order
in which they would ordinarily be used (excluding the Alert() function discussed
earlier).

Table 21-2: MUI Xtra Custom Dialog Commands.

Command and Syntax Usage

set MUIobject = new (xtra "MUI") Instantiates the MUI Xtra.

Alert (alertPropertiesList) Creates an alert dialog with one to three
buttons (see above). Not used for custom
dialogs.

GetWindowPropList(MUIobject) Returns a default window property list used
as basis for #windowPropList passed to
Initialize().

GetWidgetList(MUIobject) Returns a list of currently supported widget
types (see #type property in
GetItemPropList())

GetItemPropList(MUIobject) Returns a default widget property list used
as basis for elements in #windowItemList

passed to Initialize().1

Initialize (MUIobject,
[#windowPropList:windowProps,
#windowItemList:windowItems)

Defines (but does not display) a dialog and
its contents. Dialog is displayed using
Run() or WindowOperation()

Run (MUIObject) Displays a modal dialog.

Stop(MUIObject , 0) Dismisses a modal dialog.

WindowOperation(MUIobject,
#show | #hide)

Shows or hides a non-modal dialog. (see
Table 21-9).

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

8

ItemUpdate (MUIobject,
itemNumber, itemInputPropList)

Updates the specified item in the dialog
box with the new properties.

FileOpen (MUIobject,
"defaultFile")

Displays File Open dialog. See the External
Files chapter

FileSave (MUIobject,
itemNumber, itemInputPropList)

Displays File Save dialog. See the External
Files chapter

GetURL (MUIobject, url,
moveable)

Displays URL dialog. See the External
Files chapter

MoaErrorToString(errCode) Translates MOA errors to text. See the
Lingo Coding and Debugging Tips chapter
and Appendix E.

1. GetItemPropList() would be more useful if it returned a default list specific to a given
widget type. For some widgets, you must change most of returned list's values from the
defaults.

Let's examine a degenerative example to make it all concrete before explaining
each step in detail below (and I do explain it all!) The following example
creates a simple dialog with one editable text field as shown in Figure 21-3.

Use the dummy dialogActions() callback handler provided
with this example . Without it, a modal dialog may hang your
system. You have been warned. Use Command-period (Mac)
Ctrl-period or Esc (Windows) to dismiss a dialog if stuck.

Figure 21-3: Simple Custom Dialog

The possible widget types for your dialog are shown in Table 21-7.

The first widget in a window must be #WindowBegin and the
last widget must be #WindowEnd. Always create a separate
property list for each widget using GetItemPropList().
Reusing a list reference will trample earlier widgets created
with the same list, which can be quite confusing to debug.

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

9

Example 21-2: A Simple Custom MUI Dialog With An
Editable Text Widget

on simpleMUItest
 -- We'll want these for future use. Trust me!
 global gMUIobject
 global gWindowProps
 global gWindowItems

 -- Instantiate the Xtra
 set gMUIobject = new (xtra "MUI")

 -- Start with the default container window's attributes
 set gWindowProps = GetWindowPropList(gMUIobject)
 -- Set the title and width of the dialog
 set the name of gWindowProps = "MUI Don't Fail Me Now"
 set the width of gWindowProps = 250
 -- Specify callback handler that responds to user actions
 set the callback of gWindowProps = "dialogActions()"

 -- Build a list of the contents of the window
 set gWindowItems = []

 -- The first widget in the dialog must be #WindowBegin
 -- Start with a generic item's attributes
 set widget1 = GetItemPropList(gMUIobject)
 set the type of widget1 = #windowBegin
 add gWindowItems, widget1

 -- Add a simple text field
 set widget2 = GetItemPropList(gMUIobject)
 set the value of widget2 = ¬
 "Use Ctrl-period, Cmd-period, or Escape to Dismiss Me"
 set the type of widget2 = #editText
 add gWindowItems, widget2

 -- Add a dismiss button
 set widget3 = GetItemPropList(gMUIobject)
 set the type of widget3 = #defaultPushButton
 set the title of widget3 = "Dismiss"
 add gWindowItems, widget3

 -- The last widget in the dialog must be #WindowEnd
 set widget4 = GetItemPropList(gMUIobject)
 set the type of widget4 = #windowEnd
 add gWindowItems, widget4

 -- Initialize the dialog
 Initialize (gMUIobject , [#windowPropList: gWindowProps, ¬
 #windowItemList: gWindowItems])
 -- Draw the dialog
 Run (gMUIobject)

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

10

end simpleMUItest

-- This is your callback handler (see gWindowProps above)
on dialogActions event, itemNumber, itemPropList
 global gMUIobject
 put "Yippeee! Received event" && event
 if not objectP(gMUIobject) then
 alert "gMUIobject must be declared globally elsewhere"
 exit
 end if
 case (event) of
 #itemClicked, #itemLosingFocus, #itemChanged:
 -- In an emergency this will stop both
 -- modal and non-modal dialogs.
 put "Dismissing dialog"
 stop(gMUIobject ,1)
 windowOperation (gMUIobject , #hide)
 otherwise:
 put "We don't handle that event yet:" && event
 end case
end dialogActions

The callback handler shown above is a degenerative example designed to avoid
hanging your system. In a real example, it would respond to user actions (see
Interacting with a Dialog Box far below) and would not dismiss our dialog
unless the user hit the correct button.

Instantiation

As with most Xtras, you must create an instance of the MUI Xtra using new().
You should store the instance in a global variable for future use.

Example 21-3: Instantiating the MUI Xtra

on instanceMUI
 global gMUIobject
 set gMUIobject = new (xtra "MUI")
 if not objectP(gMUIobject) then
 alert "Install the MUI Dialog Xtra and restart Director."
 end if
end instanceMUI

Each instance of the Xtra can pertain to a different dialog, allowing you to create
and manage multiple concurrent custom dialogs.

Setting up a Custom Dialog

To create the dialog we must define the appearance of its container window (it's
size, position, etc.), and the attributes of one or more user interface elements
within it (checkboxes, sliders, etc.) There are a many attributes for the window
itself and the widgets within it. Try not to get bogged down in the details of the

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

11

next few sections. Conceptually, we are simply defining the dialog window's
attributes and storing them in a property list. We are then defining a complex
list of the widgets (and their properties) that are placed within the dialog. Once
the lists are defined, we'll initialize the dialog, using:

Initialize (gMUIobject, [#windowPropList: gWindowProps, ¬
 #windowItemList: gWindowItems])

Creating the Dialog Window

The attributes that determine a dialog window's appearance are specified in the
#windowPropList property passed to Initialize(). The
GetWindowPropList() function returns a generic list of the properties needed to
define the window. You should use the value returned by GetWindowPropList()
as the basis for your #windowPropList to ensure forward compatibility.

Example 21-4: Creating the Window Property List

put GetWindowPropList(gMUIobject)
-- [#type: #normal, #name: "window", #callback: "nothing",
#mode: #data, #xPosition: 100, #yPosition: 120,
#width: 200, #height: 210, #modal: 1, #toolTips: 0,
#closeBox: 1, #canZoom: 0]

You can modify individual properties as follows:

 set gWindowProps = GetWindowPropList(gMUIobject)
 set the name of gWindowProps = "Nutshell Test"
 set the width of gWindowProps = 250
 set the callback of gWindowProps = "dialogActions()"

(Do not be misled by the incorrect on-line Help link from the Specifying overall
dialog box properties topic to the GetItemPropList topic. GetItemPropList() is
used when specifying widgets within a dialog. GetItemWindowList() is used to
define the dialog window itself).

If you create the window property list manually, you must include all the
properties returned by GetWindowPropList() or your dialog will fail:

set gWindowProps = [#type: #alert, #name: "Nutshell Test", ¬
#callback: "dialogActions()", ¬
#mode: #data, #xPosition: -1, #yPosition: -1, ¬
#width: 0, #height: 0, #modal: TRUE, #toolTips: FALSE, ¬
#closeBox: FALSE, #canZoom: FALSE]

Table 21-3 lists the possible values for each property in the #windowPropList.
The #type, #name, #modal, #closeBox, and #canZoom properties determine the
appearance and modality of the window and its title bar. See Table 21-4 for
details on the interaction between these properties, and their differences between
Macintosh and Windows.

The #xPosition, #yPosition, #width and #height properties control the position
and size of the dialog, but depend heavily on the #mode property (which also
affects the layout of elements within the dialog). We'll revisit the dialog layout
in Dialog Coordinates after discussing how to add elements to the dialog.

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

12

Table 21-3: MUI #WindowPropList Elements

Property Usage Default Range

#type Determines window type
(see Table 21-4).

#normal #alert, #normal, #palette

#name Determines window's
title.

"window" Any string (Use EMPTY
for no name)

#modal Determines whether
dialog is modal.

TRUE TRUE or FALSE

#closeBox Determines whether
dialog has a close box.

TRUE TRUE or FALSE

#canZoom Determines whether

dialog has a zoom box.1
FALSE TRUE or FALSE

#callback Lingo handler that is
called whenever user
interacts with dialog.

"nothing" A handler name in
quotes, such as
"dialogHandler"

#toolTips Determines whether to

display tooltips.2
FALSE N/A

#mode Determines layout of the
dialog (see Table 21-6)

#data #data, #dialogUnit,
#pixel

#xPosition Offset from top of screen

to top of dialog3
100 Positive or negative. (-1

centers dialog)1

#yPosition Offset from left of screen

to left of dialog3
120 Positive or negative. (-1

centers dialog)1

#height Height of dialog,
excluding title bar, if any.

210 1 to n (limited by screen
height)

#width Width of dialog 200 1 to n (limited by screen
width)

1. The #canZoom property determines only whether a zoom box is displayed for the
dialog. It won't actually zoom the window.

2. Tool tips are not yet supported as of version 6.0.2 of the MUI Dialog Xtra.

3. The #xPosition and #yPosition properties are reversed in version 6.0.2 of the MUI
Dialog Xtra (see warning note below). Both #xPosition and #yPosition must be -1 in
order to center the dialog. Negative coordinates, like large positive coordinates, can be
used to place the dialog off-screen.

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

13

Window Appearance

Table 21-4 details how the window's #type property changes its appearance and
functionality on various platforms. These tests were performed using Windows
95 and Mac OS 7.5.5 during authoring. The results may vary slightly on
Window 3.1, Windows NT or Mac OS 8, or from a Projector, but the table
should illuminate the general relationships at play.

Table 21-4: Dialog Appearance and Properties

#type--> #alert #normal or #palette

Macintosh Windows Macintosh Windows

Usage Non-
moveable
dialog with no
title.

Moveable
dialog with
title bar.

Moveable
dialog with title
bar.

Moveable
dialog with title
bar.

#modal TRUE or
FALSE

TRUE or
FALSE

TRUE or
FALSE

TRUE or
FALSE

#name1 Ignored (no
title bar.)

Left-justified
in title bar

Centered in title
bar.

Left-justified in
title bar

#closeBox Ignored (no
title bar.)

TRUE or
FALSE

TRUE or
FALSE
(FALSE if
#modal is
TRUE)

TRUE or
FALSE

#canZoom Ignored (no
title bar.)

Ignored TRUE or
FALSE

Ignored

Whew! All we've done so far is set up the container window's attributes. Now
let's put something inside the dialog.

Adding Items (Widgets) to the Dialog

The user interface elements (widgets) within the dialog are specified in the
#windowItemList property passed to Initialize().. The
#windowItemList is a list of property lists (one property list for each
widget). The GetItemPropList() function returns a generic list of the properties
that must be specified for each widget. You should use the value returned by
GetItemPropList() as the basis for each widget's property list within
windowItemList to ensure forward compatibility.

Example 21-5: Defining a Single Widget's Properties

put GetItemPropList (gMUIobject)

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

14

-- [#value: 0, #type: #checkBox, #attributes: [],
#title: "title", #tip: "tip", #locH: 20, #locV: 24,
#width: 200, #height: 210, #enabled: 1]

You can modify individual properties as follows (see below for details) and then
add it to the list of widgets we'll be building:

set itemList = []
set itemProps = GetItemPropList(gMUIobject)
set the type of itemProps = #radioButton
set the attributes of itemProps = [#textSize:#large, ¬
 #textStyle:[#bold, #italic]]
add itemList, itemProps

If you create the item's property list manually, you must include all the
properties returned by GetItemPropList(), for example:

set itemProps = [#value: 0, #type: #checkBox, ¬
#attributes: [#textSize:#large, #textStyle:[#bold]], ¬
#title: "Check Item", #tip: "tip", #locH: 20, #locV: 24, ¬
#width: 0, #height: 0, #enabled: TRUE]

Table 21-5 lists the properties you must specify (via the #windowItemList) for
each widget within the dialog. The #attributes property is covered in both
Tables 21-7 and 21-8. The #type property must be one of the supported widget
types as indicated by GetWidgetList(), and covered in Table 21-7.

 Table 21-5: MUI #WindowItemList Element Attributes

Property Usage Default Range

#type Indicates widget type #checkBox See GetWidgetList() and
Table 21-7.

#value Initial value for widget N/A Depends on widget #type
(see Table 21-7).

#title Label used for widget. "title" Any string

#enabled Determines whether

widget is active.1
TRUE TRUE or FALSE

#tip Tool tip text for

widget.2
"tip" Any string or EMPTY

#attributes Defines widget's text
style, alignment, value
range, and more.

[] Depends on widget #type
(see Tables 21-7 and 21-
8).

#locH Horizontal location of
widget (offset from left

edge of dialog).3

20 Any integer.

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

15

#locV Vertical location of
widget (offset from top

edge of dialog).3

24 Any integer.

#width Widget's width in

pixels or dialog units.3
200 Any integer. (0 adjusts

width automatically)

#height Widget's height in

pixels or dialog units.3
210 Any integer. (0 adjusts

height automatically)

1. Disabled items appear dimmed in the dialog. Disabled buttons and sliders don't accept
mouse input. Disabled editable fields don't accept keyboard input.

2. Tool tips are not yet supported as of version 6.0.2 of the MUI Dialog Xtra.

3. The #locH, #locV, #width, and #height are ignored if #mode:#data is specified in
#windowPropList. They are measured in pixels if #mode is #pixel and dialog units if
#mode is #dialogUnit.

Dialog Coordinates and Element Positioning

The MUI Xtra offers both manual and automatic control of the window layout,
as determined by the #mode property within the #windowPropList (see Creating
the Dialog Window above). Table 21-6 shows the properties that control the
position and size of the dialog and the widgets within it. Whether the units are
pixels, or dialog units (see below), the upper left corner of the coordinate system
is (0, 0). The dialog's position is specified relative to the monitor, and the
widgets' positions are specified relative to the dialog. See Tables 21-3 and 21-5
above for details on each of the attributes.

The #xPosition and #yPosition properties are reversed
(#xPosition determines the vertical offset and #yPosition
determines the horizontal offset). (This is presumably a bug,
and may be reversed in future versions). They are used to
position the dialog in all layout modes, although the units may
vary. Setting them both to -1 centers the dialog.

Don't confuse the window's properties with the widgets' properties, and
remember that the window's #mode affects the units of measurement, the
window's size and the widgets' size and position.

Table 21-6: Window and Widget Size and Position

#mode1--> #data2 #pixel2 #dialogUnit3

Window's
horizontal

#yPosition1 #yPosition 1 #yPosition 1

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

16

position4

Window's
vertical

position4

#xPosition1 #xPosition 1 #xPosition 1

Window's
height

Sized automatically sized based on
widgets' heights and number of
widgets.

#height 1 #height 1

Window's
width

Sized automatically sized based on
widest widget or horizontal
grouping.

#width 1 #width 1

Widget's
position

Laid out automatically vertically
from top to bottom, unless
overridden (see below)

#locH and

#locV5
#locH and

#locV5

Widget's
size

Each widget type assumes a default
size, unless overridden (see below)

#width and

#height5
#width and

#height5

1. #Mode, #xPosition and #yPosition and the window's #height and #width are set in
#windowPropList passed to Initialize().

2. When #mode is #data or #pixel, all units are expressed in pixels.

3. When #mode is #dialogUnit, all units are expressed in dialog units, which depend on
the system font and are roughly 1.5 times larger than pixels (i.e. 100 dialog units is
approximately 150 pixels) using common default system fonts.

4. The #xPosition and #yPosition properties determine the offset from the upper left
corner of the monitor in units that depends on the #mode. Note that the X and Y
positions are reversed (see warning note above).

5. Each widget's #locH, #locV, #height and #width are specified in the #windowItemList
passed to Initialize().

Dynamic Layout

The easiest approach is to use dynamic layout mode (#mode:#data) in which the
height and width of the dialog and the size and position of the widgets within it
are determined automatically as follows:

1. Items are drawn in the order in which they appear in the #windowItemList
passed to Initialize(). The first widget appears at the top of the dialog, and
the last one at the bottom, with each widget appearing on a separate line,
unless overridden by a layout hint (see below).

2. A widget's #locH, and #locV properties are ignored, unless its #attributes
include [#layoutStyle:[#lockPosition]], in which case they override
automatic positioning.

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

17

3. Each widget is given a reasonable minimum height and width. It may be
enlarged to fit its #value (for #editText widgets), or #title (for button
widgets).

4. A widget's #height and #width properties are ignored, unless its #attributes
include [#layoutStyle:[#lockSize]], in which case they override automatic
sizing.

5. Widgets may be resized to fit neatly within a horizontal or vertical group
with other widgets. To quote John Ware: "Each subgroup is aligned and
sized according to other items at its level in the hierarchy, regardless of
whether the items are individual, or themselves groups." (see below). In
fact, most widgets seem to be widened to match the widest widget.

6. The dialog is automatically sized to fit all the widgets including a
reasonable border. The window's #height and #width properties ignored.

All items in a given vertical column will be given the same width. For example,
if you have a wide editable text field, a button below it would be stretched very
wide. In that case, you would have to alter the layout using layout hints (see
below) or perform manual layout.

If the dialog's title is wider than the widgets, the dialog may not be wide enough
to display the full title. In that case, either use a smaller title, larger widgets, or
manual layout in which you can specify the #width of the dialog.

Augmenting and Overriding Automatic Layout

When using dynamic layout mode, you'll often want to tweak the layout.

To align a #label widget, specify the text alignment (such as
[#textAlign:[#center]]) as part of its #attributes property. The default tends to
be left-alignment.

To specify a fixed size for a widget, include [#layoutStyle:[#lockSize]] in its
#attributes property and set its #height and #width as desired. The default
#height and #width properties are meaningless. (Buttons should generally be 20
pixels high). Set the #height and #width to zero to accept the "standard" size for
the widget. #LockSize prevents it from being stretched to match other widgets.

To specify a fixed widget position, include [#layoutStyle:[#lockPosition]] in its
#attributes property and set its #locH, and #locV as desired. (The default #locH
and #locV are meaningless). Once you've used #lockPosition for a single
widget, automatic positioning of subsequent widgets is unreliable.

Layout Hints (Horizontal and Vertical Groups)

Each widget appears on a separate line of the dialog by default, which is often
too simplistic. Fortunately, the #GroupHBegin, #GroupHEnd, #GroupVBegin,
#GroupVEnd widgets provide so-called layout hints. that create horizontal and
vertical groups of items, which can be nested (see below). Also refer to the

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

18

#dividerH and #dividerV widgets that are cosmetic only.

Items within groups will be sized automatically to provide more consistent
appearance or uniform justification.

Use the #GroupHBegin, #GroupHEnd widgets to create a horizontal grouping of
more than one widget (such as #label and #editText) on the same line of a
dialog. Use the #GroupVBegin, #GroupVEnd widgets to create a vertical
grouping of more than one widget (such as several buttons) that are then
incorporated as a unit into a horizontal grouping.

Example 21-6: Example Widget Layout

For example, to create a layout similar to the one in Figure 21-4, use the
following widgets:

#windowBegin
 #groupHBegin

 #groupHBegin
 #label
 #editText
 #groupHEnd

 #dividerV

 #groupVBegin
 #defaultPushButton
 #cancelPushButton
 #groupVEnd

 #groupHEnd
#windowEnd

Figure 21-4: Grouping Widgets in a Dialog

Layout hints are intended solely for dynamic layout mode (#mode:#data). In
dynamic layout mode, if two vertical groups are adjacent within a horizontal
group, and the first group contains only #label widgets, these labels are
automatically lined up with the items in the second vertical group.

Radio buttons inside of any group automatically become mutually exclusive
regardless of the layout modes.

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

19

Manual Layout

To manually specify the absolute size of the dialog and the size and position of
widgets within it, use #mode:#pixel.. You can use #mode:#dialogUnit.
(particularly under Windows for the Large Fonts Display setting) to adjust the
layout based on the user's system font size setting. Either manual mode requires
substantially more effort than automatic layout, but gives you much greater
control.

Dialog units are based on the current system font's height and width. If the
system font changes, the number of pixels represented by a single dialog unit
changes. When using dialog units, test your dialog's layout with different size
fonts on both platforms. The system font size is set using the Display Control
Panel's Settings tab under Windows (to set either the small or large font size),
and using the Views Control Panel on the Macintosh. Dialog units tend to be
roughly 1.4 to 1.9 times bigger than pixel units, but the conversion factor varies
with the font and point size and also differs in the horizontal and vertical axes.
Under Windows 95 using Small Fonts, a 320 by 240 dialog units window spans
480 by 385 pixels. On the Macintosh, the same dialog would span 450 by 365
pixels when using 9-point Geneva, and 600 by 420 pixels when using 18-point
Geneva as the system font.

When the window's #mode is #dialogUnit or #pixel, setting the window's
#height or #width to zero creates a zero-sized dialog. But, setting a widget's
#height or #width to zero sizes that widget automatically, as would occur by
default in dynamic layout mode.

Widget-Specific Properties and Events

There are 20 possible widget types, with more expected in the future. A list of
currently supported widget types can be obtained from GetWidgetList():

Example 21-7: Supported Widget List

set gMUIobject = new (xtra "MUI")
put GetWidgetList(gMUIobject)
-- [#dividerV, #dividerH, #bitmap, #checkBox, #radioButton,
#PopupList, #editText, #WindowBegin, #WindowEnd,
#GroupHBegin, #GroupHEnd, #GroupVBegin, #GroupVEnd, #label,
#IntegerSliderH, #FloatSliderH, #defaultPushButton,
#cancelPushButton, #pushButton, #toggleButton]

Most widgets have their specific attributes and quirks:
The #dividerH and #dividerV widgets add horizontal and vertical lines.
#DividerH is often used to set off a vertical group defined by
#GroupVBegin and #GroupVEnd. #DividerV is often used to set off a
horizontal group defined by #GroupHBegin and #GroupHEnd.

Multiple #radioButton widgets within a group are automatically treated as
mutually exclusive choices.

The #defaultPushButton widget has an OS-specific appearance indicating

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

20

that it is the default choice. You should only have one #defaultPushButton.
If a #defaultPushButton widget is present, the RETURN key sends an
#itemClicked event to the callback handler specifying its widget number.

You should only have one #cancelPushButton. If a #cancelPushButton
widget is present, the Escape sends an #itemClicked event to the callback
handler specifying the cancel button's widget number (but does not dismiss
the dialog). If no #cancelPushButton widget is present, the Escape key
dismisses the dialog and sends a #windowClosed event instead.

#PushButton widgets always return to their initial state, but #toggleButton
widgets alternate between their toggled and untoggled states. The state of a
toggle button (or check box or radio button) is indicated by its #value
property (TRUE or FALSE).

Table 21-7 shows each widget type and it's widget-specific values for the #value
and #attributes properties. If there is a bullet in the #title column, the widget's
title is displayed. Otherwise, you'll need a separate #label widget. If there is a
bullet in the #enabled column, the widget can be enabled and disabled.
Disabled widgets don't respond to mouse clicks or keyboard input. Note that the
#layoutStyle attribute applies to all widgets except those used for layout hints.
See Table 21-6 for details on the #width, #height, #locH and #locV widget
properties. See The #Attributes Widget Property below for details on the
unnervingly complex #attributes widget. See Table 21-10 for details on the
events issued when various widgets are clicked or the user hits a key.

Table 21-7: Widget-specific Attributes and Events

#type #value #attributes #title #en
able
d

Events

#bitmap cast
member
referenc

e1

#layoutStyle,
#bitmapIcon

#itemClicked,

#itemChangedw

#checkBox TRUE |
FALSE

#layoutStyle,
#textSize

• • #itemChanged,

#itemEnteringFocusw,

#itemLosingFocusw

#radioButton TRUE |
FALSE

#layoutStyle,
#textSize

• • #itemChanged,

#itemEnteringFocusw,

#itemLosingFocusw,7

#toggleButto

n2
TRUE |
FALSE

#layoutStyle,
#textSize

• • #itemChanged,

#itemEnteringFocusw,

#itemLosingFocusw

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

21

#defaultPush
Button

N/A
(see
#title)

#layoutStyle,
#textSize

• • #itemClicked,

#itemEnteringFocusw,

#itemLosingFocusw

#cancelPush
Button

N/A
(see
#title)

#layoutStyle,
#textSize

• • #itemClicked,

#itemEnteringFocusw,

#itemLosingFocusw

#pushButton N/A
(see
#title)

#layoutStyle,
#textSize

• • #itemClicked,

#itemEnteringFocusw,

#itemLosingFocusw

#PopupList String,
integer
or float

#layoutStyle,
#popupStyle,

#valueList3

• #itemChanged,

#itemEnteringFocusw,6

#itemLosingFocusw

#editText Any
string

#layoutStyle,
#textSize,
#textAlign,
#textStyle

• #itemChanged,
#itemEnteringFocus,
#itemLosingFocus

#label Any

String4
#layoutStyle,
#textSize,
#textAlign,
#textStyle

• #itemClickedm

#IntegerSlide
rH

Any
integer

#layoutStyle,
#sliderStyle,

#valueRange3

• #itemChanged

#FloatSlider
H

Any

float5
#layoutStyle,
#sliderStyle,

#valueRange3

• #itemChanged5

#dividerH N/A #layoutStyle #itemChangedm

#dividerV N/A #layoutStyle #itemChangedm

#WindowBe
gin

N/A N/A

#WindowEn
d

N/A N/A

#GroupHBeg
in

N/A N/A

#GroupHEnd N/A N/A

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

22

#GroupVBeg
in

N/A N/A

#GroupVEnd N/A N/A

M. Receives this event on the Macintosh only.

W. Receives this event under Windows only.

1. The #value is mandatory for a #bitmap widget, unless the #bitmapIcon attribute is set,
(The #bitmapIcon overrides the bitmap #value if both are specified).

2. The initial display of a #toggleButton with its #value set to TRUE is incorrect,
although the internal #value is reported correctly. The button will correct itself if clicked.

3. The #valueList and #valueRange are mandatory. Director may crash if they are not
specified for pop-up or slider widgets.

4. The #label widget's string can not be wider than the screen. Include manual carriage
returns to wrap the string onto multiple lines.

5. If the initial value for a #FloatSliderH widget is not a float, the slider returns only
integer values. Use a floating-point initial value, such as 0.0 or 10.0.

6. Under Windows, the #PopupList widget receives incorrect events when it gains or
loses focus. It seems to receive spurious #itemLosingFocus events when making a menu
selection, and receive an #itemEnteringFocus event rather than #itemLosingFocus when
truly losing focus..

7. The #radioButton widget gains and loses focus with mouse clicks, but not with the Tab
key as other widgets do under Windows. Neither does it toggle with the space bar as is
typical for Windows radio buttons.

 The #Attributes Widget Property

The #attributes widget property is somewhat complex. It is a property list,
allowing Macromedia to add more properties in the future. Some of it's
subproperties are themselves linear lists or property lists, again allowing for
future expansion.

Table 21-8 provides details on the possible values for each existing subproperty
within the #attributes property. Items in the table separated by "|" indicate a
range of exclusive choices. Items shown in a list can be specified in unison.

Example 21-8: Setting Attributes of a Single Widget

For example, the following could specify the #valueList attribute for a
#PopupList widget:

set itemProps = GetItemPropList(gMUIobject)
set the type of itemProps = #PopupList
set the attributes of itemProps = ¬
 [#valueList: ["choice1", "choice2", "choice3"]]

And the following could set up the #textStyle, #textAlign and #textSize attributes
for an #editText widget.

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

23

set itemProps = GetItemPropList(gMUIobject)
set the type of itemProps = #editText
set the attributes of itemProps = [¬
 #textStyle: [#bold, #italic], ¬
 #textAlign: [#center], ¬
 #textSize: #large]

Here we have used the #layoutStyle:[#lockSize] attribute to override the default
widget size using #height and #width. And we have used the
#layoutStyle:[#lockPosition] attribute to override the default widget position
using #locH, and #locV:

set itemProps = GetItemPropList(gMUIobject)
set the type of itemProps = #editText
set the attributes of itemProps = [¬
 #layoutStyle: [#lockSize, #lockPosition]]
set the height of itemProps = 75
set the width of itemProps = 100
set the locH of itemProps = 200
set the locV of itemProps = 250

Table 21-8: Sub-Properties for #Attributes Property

#attributes Default

#textSize: #large | #tiny | #normal #textSize: #normal

#textStyle: [#bold, #italic, #underline, #plain,

#inverse]1
#textStyle:[#plain]

#textAlign: #left | #right | #center system language standard

#popupStyle: #tiny | #cramped | #normal #popupStyle:#normal

#valueList: ["string1", "string2", "string3"] None. Must be specified for
#popupList widgets

#valueRange:[#min: min, #max: max,
#increment: incr, #jump: jump, #acceleration:
acc]

None. Must be specified for
#IntegerSliderH and
#FloatSliderH widgets.

#sliderStyle: [#ticks, #value]2 #sliderStyle:[]

#layoutStyle: [#lockPosition, #lockSize]3 #layoutStyle: [] (accept
defaults)

#bitmapIcon: [#stop | #note | #caution |
#question | #error]4

None

1. The #inverse text style is not yet supported as of version 6.0.2 of the MUI Dialog Xtra.

2. #Ticks includes tick marks along the slider and has nothing to do with the ticks used to
measure time. #Value adds a set of arrow buttons that change the slider position by the

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

24

value specified by the #valueRange's #increment property.

3. Macromedia's documentation claims that the #layoutStyle attribute also supports
#minimize, #centerH, #centerV, #right, #left, #top, #bottom, but they don't seem to work.

4. The attribute's name is #bitmapIcon not #bitmapStyle as alluded to in the on-line Help.
The example set the attributes of tempPropItemList = [#bitmapIcon:#caution] is correct.
See Figures 21-2a and 21-2b for the appearance of the various icons on each platform.

Whew! We've covered all the properties for the dialog window and the widgets
within it, but the we haven't even begun to use the dialog.

Window Layout Caveats and Tips

You can crash your system or get stuck in a modal dialog that you can not
dismiss if you are not careful.

Save your work frequently when testing MUI. Try using
Escape or Command-period if you are stuck in a dialog.

Refer to Interacting with a Dialog below for a minimalist callback handler that
will guarantee that you can dismiss your dialog.

The following tips should help when creating the #windowPropList:
The #windowPropList is a property list. You must specify all of its
properties or it won't work. Use GetWindowPropList() as the basis for your
#windowPropList to ensure forward compatibility.

Using #mode:#dialogUnit or #mode:#pixel gives you complete control over
dialog layout (see below). Use #mode:#data to have the MUI Xtra
automatically calculate the size of the window based on the size and
position of the widgets.

Avoid setting #xPosition, #yPosition, #height and #width such that the
dialog is off-screen, resulting in an error or an invisible dialog.

The #xPosition and #yPosition are reversed in version 6.0.2r33 of the MUI
Xtra (on both Macintosh and Windows)

Set both the #xPosition and #yPosition to -1 to center the dialog.

When using #mode:#dialogUnit, the units vary with the system font, and
differ in the horizontal and vertical directions. Dialog units are usually
larger than pixels.

The following tips should help when creating the #windowItemList:
The #windowItemList is a list of property lists. GetItemPropList() returns a
sample item property list. You must add one such list to the
#windowItemList for each widget (i.e. item). Use GetItemPropList() as the
basis for each item in your #windowItemList to ensure forward
compatibility.

You must retrieve a separate copy of the widget properties list using

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

25

GetItemPropList() for each widget. If you reuse the same property list for
multiple widgets, their widget attributes will trample all over each other.

Be sure to use #WindowBegin and #WindowEnd exactly once as the first
and last widgets respectively in the #windowItemList.

Use #mode:#data to calculate the size and position of the widgets
automatically.

Don't specify more widgets than fit on the user's screen. Group widgets to
include more than one widget on a line.

When using #mode:#dialogUnit or #mode:#pixel layout, be careful not to:
Create widgets that overlap (unless you do so intentionally)

Position widgets outside the limits of the dialog.

Position the dialog off-screen.

Making widgets too small to be visible. Set the widget's #height and #width
(not the window's #height and #width) to zero to size the widget
automatically.

Make widgets too big. The default widget's #height and #width creates
comically large buttons.

If the dialog is not visible, check the following:
Specifying an invalid symbol for the window's #mode property prevents the
dialog from being displayed. Valid symbols are #data, #pixel and
#dialogUnit (not #pixels or #dialogUnits).

Using VOID as the window's #name property prevents the dialog from
being displayed. Use EMPTY (or window #type:#alert on the Macintosh) to
hide the name.

If the size of the dialog (specified either manually or calculated
automatically) is too big, it won't appear. Test on a the target platform
which may have a smaller monitor than your development machine. On a
640-by-480 screen you can only have about 15 vertically arranged elements
before the dialog exceeds the screen size. Add horizontal groups to use
space more economically.

Long #label widgets (greater than about 100 characters) will overflow the
dialog's width limit and prevent it from being displayed. Include hard
carriage returns in the string so that no one line is too long.

A dialog isn't displayed by the Initialize() command. Use Run() to display
modal dialogs and WindowOperation(#show) to display non-modal dialogs.
(See the #modal window property).

Other Caveats:
Always provide a way to dismiss the dialog, usually via a
#cancelPushButton, #defaultPushButton or #pushButton widget with
corresponding code in the callback handler to dismiss the dialog.

Use Stop(MUIobject, stopCode) to dismiss a modal dialog. Use any integer
as the stopCode (even though it is ignored) or it will fail.

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

26

 Use WindowOperation(#hide) (not WindowOperation(#stop)) to dismiss a
non-modal dialog. (See the #modal window property).

#GroupHBegin and #GroupHEnd, or #GroupVBegin and #GroupVEnd
must be used in matching pairs, and can be nested, but not overlapped.

Correct:

#GroupHBegin
 #GroupVBegin
 #GroupVEnd
#GroupHEnd

Wrong:

#GroupHBegin
 #GroupVBegin
#GroupHEnd
#GroupVEnd

Running and Interacting with the Dialog

Once the dialog has been defined with Initialize() , we are only half-way to our
goal.

Example 21-9: The Life and Times of a MUI Dialog

To recap the entire process:

1. Instantiate the MUI Xtra, using set MUIObject = new (xtra "MUI")

2. Define the window and its widgets and then create the dialog using:

Initialize(MUIobject, [#windowPropList: windowProps, ¬
#windowItemList:windowItems])

3. Open a modal dialog using Run(MUIobject). Open a non-modal dialog
using WindowOperation(MUIobject, #show).

4. User actions are trapped by the handler specified in the #callback property
of the #windowPropList passed to Initialize().

5. Use ItemUpdate() to update the dialog's appearance in response to user
actions (see below).

6. Close a modal dialog using Stop(MUIobject, 0). Close a non-modal dialog
using WindowOperation(MUIobject, #hide).

7. Dispose of the MUIObject by setting it to zero.

Showing and Hiding Dialogs

The manner in which to open and close the dialog depends on whether it is
modal or non-modal. In the following examples, it is assumed that you have
already initialized the dialog using the initializeMUI handler in Example 21-10.

Example 21-10: Initializing the MUI Dialog:

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

27

on initializeMUI
 global gMUIobject, gWindowProps, gWindowItems
 set gMUIobject = new (xtra "MUI")
 if objectP(gMUIobject) then
 Initialize (gMUIobject, [#windowPropList: gWindowProps, ¬
 #windowItemList: gWindowItems])
 else
 alert "MUI Xtra doesn't seem to be installed"
 end if
end initializeMUI

Open a modal dialog box using:

Run(gMUIobject)

Dismiss a modal dialog box using

Stop(gMUIobject, 0)

The WindowOperation() command is used to show and hide non-modal dialogs.
It takes the form:

WindowOperation(gMUIobject, #action)

where #action is one of the properties shown in Table 21-9, such as:

-- Display a non-modal dialog
WindowOperation(gMUIobject, #show)
-- Dismiss a non-modal dialog
WindowOperation(gMUIobject, #hide)

Table 21-9: WindowOperation() Actions

Action Usage

#show Displays a non-modal dialog box only.

#hide Hides a non-modal dialog box.

#zoom Sends the #windowZoomed message to the #callback handler.
Nothing happens unless the callback handler implements a zoom
manually.

#center1 Centers the window on the monitor screen.

#tipsOn1 Turns tool tips on.

#tipsOff1 Turns tool tips off.

1. The #tipsOn and #tipsOff actions are not yet supported as of version 6.0.2 of the MUI
Dialog Xtra. The #center does not work on either platform in my tests.

Assuming you've stored the #windowPropList in the global variable
gWindowProps, you can use the following utilities to open and close the dialog
without regard to whether it is modal.

Example 21-11: Running and Dismissing Modal and Non-

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

28

Modal MUI Dialogs:

on runDialog whichDialog, whichProps
 global gMUIobject
 global gWindowProps

 if voidP(whichDialog) then
 set whichDialog = gMUIobject
 end if

 if not objectP(whichDialog) then
 put "Not a valid dialog instance:" && whichDialog
 exit
 end if

 if voidP(whichProps) then
 set whichProps = gWindowProps
 end if

 if listP(whichProps) then
 if (the modal of whichProps) then
 Run(whichDialog)
 else
 WindowOperation (whichDialog, #show)
 end if
 else
 -- We don't know if it is modal, so let's try both
 Run(whichDialog)
 windowOperation (whichDialog, #show)
 end if
end runDialog

on stopDialog whichDialog, whichProps
 global gMUIobject
 global gWindowProps

 if voidP(whichDialog) then
 set whichDialog = gMUIobject
 end if

 if not objectP(whichDialog) then
 put "Not a valid dialog instance:" && whichDialog
 exit
 end if

 if voidP(whichProps) then
 set whichProps = gWindowProps
 end if

 if listP(whichProps) then
 if (the modal of whichProps) then
 Stop(whichDialog, 1)

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

29

 else
 WindowOperation (whichDialog, #hide)
 end if
 else
 -- We don't know if it is modal, so let's try both
 Stop(whichDialog, 1)
 windowOperation (whichDialog, #hide)
 end if
end stopDialog

Interacting with a Dialog Box

The MUI Dialog Xtra automatically handles basic interactivity for each widget
in the dialog without additional programming. Keystrokes automatically
register in editable text fields, sliders and pop-up menus react to the mouse or
keyboard, buttons can be hilighted clicked, etc. But to determine the value of
each widget in the dialog or modify the dialog's contents in response to user
actions you must create a callback handler that determines which widget was
clicked and takes appropriate action. Don't get confused by the name callback
handler. It is just a handler that is called each time the user does something of
note in the dialog.

Creating interaction is a three-step process:

1. Set the #callback property (see below)

2. Write the callback handler (see Detecting User Actions below)

3. Use ItemUpdate() from within the callback handler.

Set up the callback handler using the #callback property in the #windowPropList
passed to Initialize(), as shown eons ago under The Life of a Dialog.. Here is a
small excerpt.

Example 21-12: MUI Lifetime Recap

global gMUIobject
global gWindowProps
global gWindowItems
set gMUIobject = new (xtra "MUI")
set gWindowProps = GetWindowPropList(gMUIobject)
-- Specify the handler that respond to user actions
set the callback of gWindowProps = "dialogActions()"
-- Set up the gWindowItems item list (not shown)
Initialize (gMUIobject, [#windowPropList: gWindowProps, ¬
 #windowItemList: gWindowItems])
Run(gMUIobject) -- Or WindowOperation for non-modal dialogs

Detecting User Actions

When anything happens in the dialog box, the callback handler is called. Your
callback handler will depend entirely on the purpose of each widget in your

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

30

dialog. Once you've written your callback handler (see below) it should be
placed in a movie script. Use this test callback handler to get your feet wet. It
assumes that the global gMUIobject is the instance of the MUI Xtra you used to
initialize and display your dialog. It dismisses the dialog when any button
within the dialog is clicked (which is not very useful but ensures that you don't
hang your system with a modal dialog that can't be closed).

Example 21-13: Sample Callback Handler

on dialogActions event, itemNumber, itemPropList
 global gMUIobject
 put "Yippeee! Received event" && event
 if not objectP(gMUIobject) then
 alert "gMUIobject must be declared globally elsewhere"
 exit
 end if
 case (event) of
 #itemClicked:
 -- In an emergency this will stop both
 -- modal and non-modal dialogs.
 stop(gMUIobject ,1)
 windowOperation (gMUIobject , #hide)
 otherwise:
 put "We don't handle that event yet:"
 end case
end

Test with a non-modal dialog to avoid freezing your system
until you get the callback handler working. Always provide
some way to dismiss the dialog in your callback handler.

The callback handler receives up to three parameters describing the event:

The first parameter (event) is always a symbol indicating the event as
shown in Table 21-10.

If event is item-related (#itemChanged, #itemClicked, #itemEnteringFocus,
or #itemLosingFocus), the second parameter (itemNumber) indicates the
item's position in the original #windowItemList passed to Initialize().

If the event is item-related, the third parameter (itemPropList) contains the
current item property list for the affected item.

If first parameter (event) is #windowClosed, #windowOpening,
#windowResized, or #windowZoomed, them the second and third parameters
are VOID. Don't assume that the third parameter (itemPropList) is always a
list.

Widgets generate either an #itemClicked or #itemChanged event, not both,
although widgets also generate #itemEnteringFocus and #itemLosingFocus. See
below for details on how to use this information in your callback handler.

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

31

Table 21-10: Callback Events

Event Usage Issued by

#itemChanged1 Sent when an item has

changed.2
#checkBox, #radioButton,
#toggleButton, #popupList,
#editText, #IntegerSliderH,

#FloatSliderH, #dividerHm,

#dividerVm

#itemClicked1 A button or label has

been clicked.3
#bitmap, #defaultPushButton,3

#cancelPushButton,3

#pushButton, #labelm

#itemEnteringFocus1 An editable text field

gained focus.4
#editText, #checkBoxw,

#radioButtonw, #toggleButtonw,

#popupListw,

#defaultPushButtonw,

#cancelPushButtonw,

#pushButtonw

#itemLosingFocus1 An editable text field
lost focus

#editText, #checkBoxw,

#radioButtonw, #toggleButtonw,

#popupListw,

#defaultPushButtonw,

#cancelPushButtonw,

#pushButtonw

#windowClosed Dialog was closed.5 The close box, Stop() or

WindowOperation(#hide).5

#windowOpening Dialog was opened. Run() or
WindowOperation(#show).

#windowResized Dialog was resized
(not yet supported).

N/A

#windowZoomed Dialog zoom was

requested.6
Zoom box, or
WindowOperation(#zoom)

m. Macintosh-only

w. Windows-only

1. Callback handler receives item's number and property list as parameters following the
item-related events.

2. The #itemChanged event is sent when

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

32

 A keystroke affects the contents of an editable text field.

A #FloatSliderH or #IntegerSliderH widget's value changes (i.e. only if the slider moves,
not when it gains focus) whether using the arrow keys (Windows only) or the mouse.

The user re-selects the current menu choice from a #PopupList.

User clicks on a #dividerH or #dividerV widget!

3. The #itemClicked event is also sent when:

The RETURN key is pressed on the Macintosh (if a #defaultPushButton widget is defined),
The ESCAPE key is pressed on the Macintosh (if a #cancelPushButton widget is defined).
The ENTER key is pressed under Windows when any type of push button has focus under
Windows. The SPACE bar is pressed under Windows when a radio button, check box or
toggle button has focus.

4. An #editText widget can lose focus to another #editText widget, or to a
#defaultPushButton when the RETURN key was pressed.

5. The #windowClosed event is also sent when the ESCAPE key is pressed, but only if a
#cancelPushButton widget is not defined.

6. Nothing happens unless you resize the dialog manually in your callback handler, which
appears to be possible only if you re-initialize the entire dialog.

An Improved Callback Handler

Now that we have a grasp on how callback handlers can decipher different
events, let's look at an improved version of our callback handler from Example
21-13 in Example 21-14. This can replace the earlier callback handler once you
have gotten the dialog layout as desired, and want to add some functionality. It
is merely a skeleton. You'll have to add whatever you want for your particular
dialog. See the example Director movies cited at the beginning of this section
for some examples.

Note that for #itemChanged events we inspect the item's #value to determine the
widget's current state or contents. For #itemClicked events, we inspect the
item's title or number to determine which button was clicked. In either case, the
type of widgeProps tells us how to interpret the item.

Example 21-14: Complete Callback Handler Template

on dialogActions event, widgeNum, widgeProps
 global gMUIobject
 global gWindowProps
 global gWindowItems

 if voidP(widgeNum) then
 put "Window event detected:" && event
 else
 put "Widget" && widgeNum && "generated:" && event
 -- Determine the widget generating the event
 set widgeType = the type of widgeProps
 set widgeName = the title of widgeProps
 set widgeValue = the value of widgeProps

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

33

 end if

 case (event) of
 #itemEnteringFocus, #itemLosingFocus:
 -- You'll usually ignore these events generated
 -- for #editText widgets (and others under Windows)

 #itemChanged:
 -- One of the following widget types has changed:
 -- #checkBox, #radioButton, #toggleButton,
 -- #popupList, #editText, #IntegerSliderH,
 -- #FloatSliderH (#dividerH and #dividerV on Mac)
 case (widgeType) of
 #checkBox, #radioButton, #toggleButton:
 put "State of" && widgeName && "is:" && widgeValue

 #popupList:
 put "Picked" && widgeValue && "from" && widgeName

 #editText:
 -- This is called each time a keystroke
 -- affects the contents of a text field.
 -- Filter out characters using ItemUpdate()
 put "The last key pressed was" && the key
 put "Field" && widgeName && ":" && widgeValue
 -- Disallow any spaces, for example:
 if (the key) = SPACE then
 beep
 -- Reset previous contents of text field
 -- That we've kept stored on a running basis
 if listP (gWindowItems) then
 set the value of widgeProps = ¬
 the value of getAt (gWindowItems, widgeNum)
 end if
 if objectP (gMUIobject) then
 ItemUpdate (gMUIobject, widgeNum, widgeProps)
 else
 alert "gMUIobject should be a MUI instance"
 end if
 end if

 #IntegerSliderH, #FloatSliderH:
 put "Slider" && widgeName && widgeValue

 #dividerH, #dividerV:
 nothing
 end case

 -- Store the new value of the widget
 -- back into our global widget property list
 if listP (gWindowItems) then
 setAt (gWindowItems, widgeNum, widgeProps)

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

34

 else
 put "gWindowItems should be #windowItemList"
 end if

 #itemClicked:
 -- One of these widgets has been clicked:
 -- #defaultPushButton, #cancelPushButton,
 -- #pushButton, #bitmap (or #label on Mac)
 put widgeName && widgeType && "clicked"
 case (widgeType) of
 #defaultPushButton :
 -- There should be only one #defaultPushButton
 -- If default is OK, commit any changes
 -- If default is Abort, revert any changes
 -- Either way, you should dismiss the dialog.
 stopDialog()
 #cancelPushButton:
 -- There should be only one #cancelPushButton
 -- Abort any changes and then dismiss the dialog
 stopDialog()
 #pushButton:
 -- Use #title to determine which button was pushed
 -- or use widgeNum if button names are not unique.
 case (widgeName) of
 "OK":
 -- If OK button was not a #defaultPushButton,
 --- you can handle it here.
 "Cancel":
 -- If the cancel button was not a
 --- #cancelPushButton, you can handle it here.
 "Button Name":
 -- Perform action for button "Button Name"
 otherwise:
 put "Button not implemented"
 end case

 #bitmap:
 -- Check #title to determine bitmap clicked
 #label:
 -- You will probably ignore these events
 -- as labels are not usually clickable
 end case

 #windowOpening:
 -- You will usually ignore #windowOpening events, but
 -- you could enable buttons based on movie state
 #windowClosed:
 -- The dialog will close without your intervention.
 -- You will probably want to commit any changes
 #windowZoomed :
 -- There is no convenient way to zoom a window
 -- You'll probably ignore these events, and should

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

35

 -- avoid using a zoom box in your dialog's title bar.
 #windowResized :
 -- There is no convenient way to resize a window, and
 -- nothing currently generates #windowResized events.
 otherwise:
 put "Unrecognized event: " && event
 end case
end dialogActions

Updating the Dialog

Use the ItemUpdate() command from within your callback handler to update the
dialog's appearance or contents in response to user actions. It takes this form:

ItemUpdate(gMUIobject, itemNumber, singleItemPropList)

where itemNumber is the number of the item to update, and singleItemPropList
is a list of new properties for it. The first item should be available from a global
variable, and the last two items are received in your callback handler.

ItemUpdate() can be used to:
Enable or disable buttons, text fields, or sliders based on current settings
Filter editable text fields
Update a slider
Change the range of values listed in a pop-up
Change a bitmap displayed in the dialog

You typically update an item's #enabled, #value or #attributes, but you can
update any property except an item's #type. Set the #height, #width, #locH, and
#locV properties to -1 to leave them the item's size and position unchanged.

The widgeProps passed to the callback handler only contains the properties for
the widget receiving the event. It does not contain the properties of all the
widgets, nor is there any way to obtain these from the dialog. This is only a
problem if you want to update other widgets based on the one generating the
event. For example, you can use the #value or #title property from the
itemPropList to detect which button, slider or text field was involved. The
widgeNum (also received by the callback handler) is used primarily to update the
same item using ItemUpdate(), not to determine which item received the event.

To modify one or more widgets based on events received by
other widgets, you must save their properties (used in the
#windowItemList to initialize the dialog) in a global variable.

To maintain its correct state, you must then update that global list within your
callback handler each time a relevant event occurs. Only then will you have the
needed properties available to update other widgets using ItemUpdate(). If you
store the entire #windowItemList, you can use the widgeNum received in the
callback handler as the index into that list. All widgets, including dividers and
group widgets are included in the widget count.

When using dynamic layout mode, there is no way to anticipate what the

DRAFT, August 3, 1999
Lingo in a Nutshell, published by O'Reilly & Associates

Copyright ©1996-1999. Bruce A. Epstein. All Rights Reserved.
Please send feedback to lingonut@zeusprod.com

36

eventual size and position of a given widget will be. To update a widget without
changing its size and position, set its #locH, #locV, #height and #width
properties to -1, which will maintain the previous values.

Whew! Now wasn't that special!

Possible Conflicts and Bugs
Crash when using #RetryCancel

Specifying the #RetryCancel option for the #buttons property when creating
a MUI Alert dialog may crash in D7.0. I am not sure about its reliability in
D7.0.2, or D6.5 and prior. The online examples include a substitute handler
to manually construct a Retry/Cancel dialog box.

Palette Conflicts
Like all Windows system dialog boxes, MUI dialog boxes may appear
incorrectly when using 256 colors, unless using the Windows System
palette or a custom palette with the first and last ten colors reserved. If using
a custom bitmap in your MUI dialog box, make sure the bitmap is mapped
to the Windows System palette.

MIAW Conflicts
The MUI Xtra may also conflict with open MIAWs. Close any MIAWs
before using the MUI Xtra, or any feature of Director that uses MUI, such
as the Behavior parameters dialog box. See the following technote for
additional details:

http://www.macromedia.com/support/director/ts/documents/unexpected_error.htm

Myron Mandell reports some success with using the MUI Xtra from
MIAWs, but also reports that a modal MUI Alert dialog box cannot be
dismissed when called from a modal MIAW on the Macintosh (at least this
was the case in D6). He suggests the workaround shown below:

if the platform contains "Macintosh" then
 set the modal of the activeWindow to FALSE
 displayMUIalert() -- This is a custom handler
 set the modal of the activeWindow to TRUE
else
 displayMUIalert() -- This is a custom handler
end if

Conflicts on 68K Macs and older versions of the Mac OS

One user reported an error with MUI using Mac OS 7.1.2. The error message
was:

Script Error: XTRA not found "MUI"

I’ve experienced conflicts on Mac 68K systems, especially ones running older
versions of the OS. MUI may require a recent version of the Appearance
Manager Extension. It may also fail to load in low memory. Allocate more
memory to your Macintosh projector if in doubt.

